
6th Intl. Conference on Database Theory (ICDT)Delphi, Greece, January 8{10, 1997LNCS 1186, SpringerTotal and Partial Well-Founded DatalogCoincideJ�org FlumI Max KubierschkyI Bertram Lud�ascherIII Mathematische Fakult�at, Universit�at Freiburg,Eckerstr. 1, 79104 Freiburg, Germanyfflum,makug@ruf.uni-freiburg.deII Institut f�ur Informatik, Universit�at Freiburg,Am Flughafen 17, 79110 Freiburg, Germanyludaesch@informatik.uni-freiburg.deAbstract. We show that the expressive power of well-founded Data-log does not decrease when restricted to total programs (it is known todecrease from �11 to �11 on in�nite Herbrand structures) thereby a�rma-tively answering an open question posed by Abiteboul, Hull, and Vianu[AHV95]. In particular, we show that for every well-founded Datalogprogram there exists an equivalent total program whose only recursiverule is of the form win(�X) move(�X; �Y);:win(�Y)where move is de�nable by a quanti�er-free �rst-order formula. Thisyields a nice new normal form for well-founded Datalog and implies thatit is su�cient to consider draw-free games in order to evaluate arbitraryDatalog programs under the well-founded semantics.1 IntroductionThe well-founded semantics (WFS) [VGRS88, VG93] has become popular asan intuitive and \well-behaved"1 semantics for the language of logic programscontaining negative cyclic dependencies, like the famous program Pgame:win(X) move(X;Y);:win(Y):A position X in a game is won, if there is a move to some position Y whichis not won (since then the opponent has to move). WFS assigns a partial(3-valued) model WFS(P;D) to every logic program P and database D. Thethird truth-value unde�ned is assigned if the truth of an atom A depends neg-atively on itself and there is no other \well-founded" derivation for A lead-ing to true. Consider for example a move graph for Pgame consisting of theedges move(a; b);move(b; a);move(b; c) and move(c; d). Under the well-founded1 Dix [Dix95] formally de�nes this notion using certain abstract properties, and showsthat WFS is the weakest well-behaved extension of the generally accepted strati�edsemantics [ABW88].

semantics, win(d) is false, since there are no moves from d. Consequently, win(c)is true, since it is possible to move from c to d. On the other hand, win(a) andwin(b) are unde�ned since a is won i� b is not won, and b is won i� a is not won.This corresponds nicely to the fact, that the positions a and b in the game aredrawn: the player moving from b has no winning strategy (moving to c wouldleave the opponent in a won position), but she can enforce a game of in�nitelength by moving from b to a and thus avoid losing.Another aspect of languages which has always played an important role indatabase theory is expressive power, i.e., the class of queries de�nable in a lan-guage. The query associated with a logic program P and databaseD is de�ned interms of the true atoms of WFS(P;D) (hence unde�ned and false atoms belongto the complement of the query). Van Gelder showed that Datalog evaluatedunder WFS is equivalent to (least) �xpoint logic [VG89, VG93].A natural question arising is: What is the expressive power of programs whichnever yield the truth value unde�ned, i.e. which are total for all databases D?For logic programs over in�nite Herbrand structures, the restriction to totalprograms results in loss of expressive power from �11 to �11 [Sch95]. For Dat-alog programs, the question has been posed by Abiteboul et. al. [AHV95] andremained open so far. We give the somewhat surprising2 answer that on �nitestructures, i.e. for well-founded Datalog, there is no loss of expressive power.3As it turns out, games play a crucial role in our solution: using a normal formfor �xpoint logic, we �rst show that every Datalog program can be viewed asa game between two players. Thus, the ubiquitous win-move example is raisedretroactively to an elegant normal form for well-founded Datalog. The drawnpositions of the game are exactly the unde�ned atoms of the well-founded model.The second result is that for every game one can �nd an equivalent game which isdraw-free, i.e. all positions in the game are either won or lost. This implies, thattotal well-founded Datalog and well-founded Datalog have the same expressivepower.The paper is structured as follows. In Section 2 the required concepts andterminology are briey introduced. They are based on [AHV95], [VG93, AB94](for WFS) and [EF95] (for �xpoint logic). In Section 3 we �rst introduce gamesand then show our main result, the reduction of games to draw-free games.2 Indeed, in [VG93] van Gelder writes: \This suggests that the alternating �xpointon normal programs captures the negation of positive existential closures (such astransitive closure), but not the negation of positive universal closures (such as well-foundedness)." The generalization of WFS to general logic programs, i.e., with �rst-order rule bodies avoids { at least for some examples { unde�ned atoms in thewell-founded model (cf. [Che95]).3 In [Kub95], the second author has obtained a normal form theorem for LFP. Rewrit-ing programs as logic formulas, the �rst author realized that Kubierschky's resultcan be used to solve the problem by Abiteboul et. al. The present exposition is dueto the third author.

2 PreliminariesA database schema (or relational schema) � is a �nite set of relation symbolsr1; : : : ; rk with associated arities �(ri) � 0. Let dom be a �xed and countableunderlying domain. A database instance (database) over � is a �nite structureD = (U; rD1 ; : : : ; rDk) with �nite universe U � dom and relations rDi � U�(ri).Let inst(�) denote the set of all database instances over �. A k-ary query qover � is a computable function on inst(�) such that (i) q(D) is a k-ary relationon U , and (ii) q is preserved under isomorphisms, i.e. for every isomorphism � ofD, q(�(D)) = �(q(D)). Thus, a query de�nes a k-ary global relation on inst(�).A query language L is a set of expressions together with a semantics whichmaps every expression ' 2 L to a query (over some �). The expressive power ofa query language L is the class of all queries de�nable in L. ' 2 L1 is equivalentto 2 L2 if they express the same query. We say that L1 is at most as expressiveas L2, denoted by L1 � L2, if for every expression in L1 there is an equivalentexpression in L2. Both languages have the same expressive power, written asL1 � L2, if L1 � L2 and L2 � L1. L may denote both the language and theclass of queries de�nable in it.Notation. Following logic programming notation, we write domain variablesin upper case like X;X 0; Y . Constants like x; y; a and relation symbols likewin;move are denoted in lower case.�T denotes a vector of n terms T1; : : : ; Tn (variables or constants).eT denotes n-ary repetition of T , i.e. a vector T; T; : : : ; T .We write '(�X) to emphasize that all free variables of ' are among �X; if we writeonly ', nothing is said about the free variables of '.Well-Founded Datalog. A Datalog: program P is a �nite set of rules of theform H B1; : : : ; Bn;:C1; : : : ;:Cmwhere the head H is an atom, all Bi, Cj are atoms or equalities T1 = T2 whereT1; T2 are terms. A rule where n = m = 0 is called a fact.The signature �P of P is partitioned into a set idb(P) of relation symbols ofP occurring in some head of P and edb(P) of relation symbols occurring only inthe bodies of rules.Fix a program P and a database D over edb(P). A ground instance of arule is obtained by substituting constants from D for all variables; ground(P;D)denotes the set of all such ground instances of rules of P , and BP;D denotes theset of all ground instances of atomic formulas of P .Let Y � BP;D. For X � BP;D letTYP (X) := fH j (H B1; : : : ; Bn;:C1; : : : ;:Cm) 2 ground(P;D)with (Bi 2 D or Bi 2 X) for all 1 � i � nand Cj =2 Y for all 1 � j � mg

Then TYP is a monotone operator. Let �P (Y) := lfp(TYP) be its least �xpoint.The operator �P is antimonotone (observe how Y is used in TYP), i.e., Y1 � Y2implies �P (Y2) � �P (Y1). It follows that �2P (:= �P ��P) is a monotone operator;thus it has a least and a greatest �xpoint lfp(�2P) and gfp(�2P). These are usedto de�ne the truth value of a ground atom A under the well-founded semanticsWFS(P;D) for a given program P and database D:WFS(P;D)(A) := 8><>: true if A 2 lfp(�2P)false if A =2 gfp(�2P)undef if A 2 gfp(�2P) n lfp(�2P) (?)De�nition 2.1 (W-Datalog, W-Datalog2)A program P is called total (or 2-valued) if for all databases D there is no groundatom A with WFS(P;D)(A) = undef .Let W-Datalog denote the set of Datalog: programs evaluated under thewell-founded semantics, W-Datalog2 is the set of total W-Datalog programs. 2Using the true atoms of the well-founded semantics, P de�nes for every relationr 2 idb(P) a query qP;r over edb(P):qP;r : D 7! f�x jWFS(P;D)(r(�x)) = trueg (??)We may assume w.l.o.g. that P contains one distinguished relation symbolanswer 2 idb(P). This uniquely associates a query with every Datalog programP .Least Fixpoint Logic. Let FO be the set of �rst-order formulas. By closingFO under least �xpoints of positive formulas we obtain least �xpoint logic LFP.The set of LFP-formulas is given by the following rules:4' if ' is an atom ; ':' ; '; ' ^ ; '9X' ; '[LFPR(�X) '] �V if (+)where (+) is the proviso that the inductive relational variable R occurs onlypositively (i.e., under an even number of negations) in ', and �X; �V are �(R)-arytuples of variables.5 The semantics of LFP-formulas is given by a relation D j= as usual. In particular, for (�U; �V) = [LFPR(�X) '(R; �X; �U)] �V and �u; �v in D:D j= (�u; �v) :, �v 2 R1�uwhere R0�u := ;, Ri+1�u := f�x j D j= '(Ri�u; �x; �u)g and R1�u := Si2INRi�u.Every LFP-formula (�X) de�nes a query q as follows:q : D 7! f�x j D j= (�x)gUsing (?) and (??) one can easily show W-Datalog � LFP.4 In �xpoint formulas, relational variables are denoted in upper case.5 8;_ and! are viewed as abbreviations. For notational convenience, we only considervariables �V instead of terms �T in the last rule.

3 A Normal Form for Well-Founded DatalogAbiteboul et. al. raised the question whether one can �nd for each W-Datalogprogram an equivalent total program [AHV95, pp. 397,401,403]. In other words, isW-Datalog � W-Datalog2? (W-Datalog2 � W-Datalog holds trivially.) When re-stricted to ordered databases, this is obviously the case, since S-Datalog (strati�edDatalog) is equivalent to LFP (and thus captures PTIME) on ordered databases,and WFS is 2-valued for S-Datalog (see e.g. [AHV95]).As we will show, the question can also be answered a�rmatively in the ab-sence of order. First, using results of van Gelder [VG89] and Grohe [Gro94],we show that every W-Datalog program can be transformed into a normal formwhich corresponds to a certain game. The main result is that one can reduce suchgames to draw-free games, which is equivalent to the fact that the correspondingW-Datalog program is total.3.1 GamesA game is a �nite structure G = (V;moveG) with signature � = fmoveg anduniverse V . V are the positions (or vertices), moveG � V �V the set of possiblemoves.The game is played with a pebble by two players I and II in rounds. Eachround consists of two moves. Initially, I starts the game from some position x0.A player can move from x to y i� (x; y) 2 moveG. A player loses in x, if shecannot move; she wins in x, if she can move to a position in which the opponentloses. A position x 2 V is won (for I) if I can always win the game starting atx, no matter how II moves. Conversely, x 2 V is lost (for I) if II can always winthe game, no matter how I moves. A position x is drawn if x is neither lost norwon. Observe that the presence of cycles in moveG is necessary but not su�cientfor the existence of drawn positions in G.If x is won, the length of x, denoted jxj, is the number of rounds which arenecessary for I to win, provided both players play optimal (i.e., each player triesto win as quickly or to lose as slowly as possible). If x is lost or drawn, letjxj =1. A game is called draw-free if no position in V is drawn.Games have a very elegant and intuitive representation in W-Datalog in theform of the famous win-move example. Indeed this example has always beenused to demonstrate that WFS handles negation in a nice and intuitive way.De�nition 3.1 (W-DatalogG) Let W-DatalogG be the class of W-Datalog pro-grams P which have a single recursive rule of the formwin(�X) move(�X; �X 0);:win(�X 0)where �X and �X 0 have the same arity � 1, and a rule of the formanswer(�U) win(�T)

where �U are variables occurring in �T . All other rules of P are nonrecursive,contain neither win nor answer , and are semipositive, i.e., negation is allowedonly in front of edb relations.6Let W-DatalogG2 be the set of total programs in W-DatalogG. 2The simplest program in W-DatalogG is PG:win(X) move(X;X 0);:win(X 0):answer win(x0):One easily veri�es that PG represents games, i.e., for every gameG = (V;moveG),x0 is won/lost/drawn in G i� WFS(PG; G)(answer) = true=false=undef .We use the following theorems to show that an arbitraryW-Datalog programcan be transformed into a W-DatalogG program:Theorem 3.2 (W-Datalog � LFP, [VG89])For every W-Datalog program there is an equivalent LFP-formula and vice versa.Theorem 3.3 (Bounded Skolem Normal Form, [Gro94])Every LFP-formula with free variables �U is equivalent to a formula (�U) of theform 9V [LFPW (�X) '0(�X; �U) _ 9 �Y 8 �Z('(�X; �Y ; �Z; �U)!W (�Z))]eVwhere '0; ' are quanti�er-free �rst-order formulas not containing W .Theorem 3.2 and Theorem 3.3 imply that for every W-Datalog program P ,there is an equivalent LFP-formula in bounded Skolem normal form. In thesequel, we show how to obtain an equivalent program P 2 W-DatalogG byviewing as a game.Diagrams. As an auxiliary notation for games, we make use of diagrams as theone depicted in Fig. 1 (we do not need a formal de�nition). With every diagramd and structure D we associate a game Gd;D = (V;moveGd;D) as follows:Let �X = X1; : : : ; Xn be the unprimed variables of the diagram d, and letSq = fs1; : : : ; smg be the (white and black) \squares" of d. Then the positionsof Gd;D are V = f(s; �x) j s 2 Sq; �x 2 Dng :The possibles moves between positions are given by the edges in d:((s; �x); (s0; �x0)) 2 moveGd;D i� there is an edge s ��! s0 in d, and (i), (ii) hold:(i) for all Xi such that X 0i is not 9-quanti�ed in �, we have x0i = xi .(ii) if � contains a quanti�er-free formula '(�X; �X 0), then D j= '(�x; �x0) .6 A rule r is nonrecursive if no literal in the body of r is depending { directly orindirectly via other rules { on the atom in the head of r, see e.g. [AHV95].

s0 ba '0(�X; �U)9 �Y 09 �X 0 : '(�X; �Y ; �X 0; �U)move(s0; �X; �Y ; �U; a; �X 0; �Y 0; �U 0) �X 0 = �X; �U 0 = �U:move(s0; �X; �Y ; �U; b; �X 0; �Y 0; �U 0) R'0(�X; �U); �X 0 = �X; �Y 0 = �Y ; �U 0 = �U:move(a; �X; �Y ; �U; s0; �X 0; �Y 0; �U 0) R'(�X; �Y ; �X 0; �U); �Y 0 = �Y ; �U 0 = �U:R'0(�X; �U) : : :R'(�X; �Y ; �Z; �U) : : :win(S; �X; �Y ; �U) move(S; �X; �Y ; �U; S0; �X 0; �Y 0; �U 0);:win(S0; �X 0; �Y 0; �U 0):answer(�U) win(s0; eV ; �Y ; �U):Fig. 1. Reduction from Bounded Skolem Normal Form to a GameGd;D can be viewed as a game played with a sequence of pebbles (S;X1; : : : ; Xn)whose actual value (s; x1; : : : ; xn) is a position in Gd;D: the pebble S is on somesquare s in d, the pebbles Xi are on elements xi of D. The players of Gd;D movealternately between white and black squares (player I) or vice versa (player II).The pebbles can be moved from (s; �x) to (s0; �x0) only if there is an edge s ��! s0in d, and if additionally the old positions �x of the X-pebbles and their newpositions �x0 satisfy the conditions (i) and (ii) above. In particular, all pebblesXi have to remain on their positions during a move unless X 0i is 9-quanti�ed in�. Every diagram d with unprimed variables �X can be directly translated intothe de�nition of the move relation move(S; �X; S0; �X 0) of the game Gd;D suchthat for the resultingW-DatalogG program Pd we have WFS(Pd; D)(win(s; �x)) =true=false=undef i� (s; �x) is won/lost/drawn inGd;D. This translation is straight-forward and should be clear from Fig. 1. Now we are in position to proveTheorem 3.4 (W-Datalog �W-DatalogG)For every W-Datalog program P there is an equivalent program PG 2W-DatalogG.Proof. Let P be a W-Datalog program. By Theorems 3.2 and 3.3 there is anequivalent LFP-formula (�U) in bounded Skolem normal form. We view (�U)as the game depicted by the diagram in Fig. 1. As explained before, the programP in Fig. 1 can be directly obtained from the diagram and represents this game.Since '0 and ' in the diagram are quanti�er-free FO-formulas, the rulesde�ning the equivalent idb relations R'0(�X; �U), R'(�X; �Y ; �Z; �U) of P can bechosen semipositive and nonrecursive.The idea behind the game is as follows: Player I wants to prove that some

�X are in the least �xpoint W1�u of Theorem 3.3. Player II wants to prove thecontrary. �U are �xed parameters and passed around unchanged.If '0(�X; �U) holds, I can move from s0 to b and win, since there are no movesfrom b. The other possibility for I to win is the move to a. I can win by movingto a if she chooses some �Y such that for all �Z for which '(�X; �Y ; �Z; �U) holds,W (�Z) also holds. In terms of the game, this means that �Z has to be establishedas a won position for I in the next round. This is achieved by substituting �X 0for �Z in '(�X; �Y ; �Z; �U) as in Fig. 1, which \feeds back" the new �X in place of �Zin the �xpoint process. By induction one can verify that (for all �y):win(s0; �x; �y; �u) 2 �2kP , �x 2W k�u ;which is the case i� I wins the game in s0 in k rounds. Therefore,win(s0; �x; �y; �u) 2 lfp(�2P), �x 2W1�u ;which implies answer (�u) 2 lfp(�2P), for some v : ev 2W1�u, D j= (�u) ;where D is the structure which is implicit in the de�nition of W k�u and �P .Remark. We have chosen as Theorem 3.3 the normal form of [Gro94] sinceit allows a particularly short translation into a game. Theorem 3.4 can also beproven from the following more familiar normal form theorem:Theorem 3.5 ([Imm86])Every LFP-formula is equivalent to a formula of the form [LFPR(�X)'] �T where' is a FO-formula.Sketch of a proof of Theorem 3.4 using Theorem 3.5: By induction on FO-formulas de�ne a diagram d' such that Gd';D reects the evaluation of ' inD. In order to convert d' to a diagram d for = [LFPR(�X)'] �T , substitute allarrows with label containing R into appropriate loops back to the start of d' (usethat ' is positive in R). Convert d into a W-DatalogG program as describedabove.3.2 Reduction from Games to Draw-Free GamesIt remains to show that for each game, there is an equivalent draw-free game.We present an informal proof emphasizing the idea of the construction.7Theorem 3.6 (W-DatalogG �W-DatalogG2)For every W-DatalogG program there is an equivalent program in W-DatalogG2 .7 The presented reduction is due to [Kub95] which also contains the details of a proofof a normal form for LFP implying Theorem 3.6.

Proof. The main problem consists in avoiding drawn positions. In the absenceof an order on the domain it seems particularly di�cult to limit the length ofthe game in order to eliminate drawn positions, e.g. we cannot use a counter forthat purpose.The basic idea is to limit the length of a game by comparing it to a game ofmaximal length. Two games are compared by playing them independently butsynchronously. Thus, we construct a new game 2G which simulates these twogames on the original structure G. To do so, we need two pebbles { one for eachgame in G. Call these the clock pebble �Y (on position �y in G) and the verifypebble �X (on position �x in G).8 The game played with the clock pebble is usedto limit the length of the game played with the verify pebble. The latter playsthe role of the pebble in the original game G.Initially, player I claims that the verify pebble is on a won position, i.e.j�xj < 1. II places the clock pebble on �y and claims that j�yj is the maximallength of a won position in the game. If this is true, I and II can compare j�xjand j�yj and thus verify the original claim of I. The di�culty remains that bothplayers have to agree upon the choice of �y. To solve this, one has to design 2Gin such a way, that II can be disproved if she \cheats" by choosing a �y which isnot maximal.The new game 2G is constructed as follows (cf. Fig. 3): We use two macros1 round(�X) and 1 round(�Y) to denote a round of moves of the pebbles on �x and �yin G, respectively (Fig. 2). Note that in the simulated game G, I moves �rst in1 round(�X) while II moves �rst in 1 round(�Y).
z1 : : : z41 round(�X) := z1z2z3z4 z1 : : : z41 round(�Y) := z1z2z3z4

9 �X 0 move(�X; �X 0)9 �X 0 move(�X; �X 0) 9 �Y 0 move(�Y ; �Y 0)9 �Y 0 move(�Y ; �Y 0)Fig. 2. Macro De�nitionsLike above, the diagram in Fig. 3 de�nes a set of semipositive nonrecursiverules for the new relation move(S; �X; �Y ; S0; �X 0; �Y 0). Thus, if the move relation8 As noted before, �X = X1; : : : ; Xn is a sequence of pebbles on positions �x; analogouslyfor �Y .

s0a b c d1 : : : d41 round(�X) ef gh1 : : : h41 round(�X) i1 : : : i41 round(�Y)jkl1 : : : l41 round(�X)m1 : : :m41 round(�Y)

9 �Y 0 9 �X 0 9 �X 0 9 �X 0 �Y 0 : �X 0 �Y 0 = �Y �X

Player Is0 ! a j�xj < 1, \the length of �xis �nite, ie �x is won"b! c 9�x : j�xj = 1, \I show youa new �x which is won in 1round"f ! k j�xj � j�yj, \�y is not shorterthan �x"f ! g j�yj < 1; 9�x : j�xj = j�yj +1, \�y is �nite, but notof maximal length: I showyou a new �x which is 1round longer"j ! k j�xj � j�yj, \�y is not shorterthan �x"l1 ! l2 j�xj � j�yj, \I can win intime"

Player IIa! b :9�x : j�xj < 1, \there is no �xin G which is won"a! f 9�y : j�yj < 1; j�yj maximal,j�xj > j�yj, \�y is �nite, of maxi-mal length and shorter than �x"k ! l1 j�xj > j�yj, \you can't win on �xin time"g ! h1 j�xj > j�yj + 1, \�x is more than1 round longer than �y: I giveyou a lead of 1 round �x and youlose"g ! i1 j�xj � j�yj, \your chosen �x is notlonger than my �y: let us swapthe pebbles on �x and �y and giveme a lead of 1 round in �y0: thenyou lose on �x against the clock"Fig. 3. Draw-Free Game 2G and Implicit Claims of I and II.

of the original G (used in the macros of Fig. 2) is n-ary, the new move relationof 2G is 2(n+ 1)-ary. For a given answer relation answer (�U) win(�X) in PG,the new answer relation of P2G is de�ned asanswer(�U) win(s0; �X; �Y):It is easy to see that I wins in 1 round(�X) if j�xj = 1, and II wins 1 round(�Y) ifj�yj = 1.Assume for the moment that the dashed edge m4 ! s0 in Fig. 3 is absent.The loop l1 ! m4 ! l1 compares the lengths of �x and �y: I wins this comparisonif j�xj <1 and j�xj � j�yj, while II wins if j�yj <1 and j�yj < j�xj.To get a better understanding of the construction of 2G, we explain thediagram in Fig. 3 as a dialog between I and II, where each move correspondsto a claim of the moving player. Observe that each claim of a player contradictsthe previous claim of the opponent, and that each false claim can indeed bedisproved using the corresponding moves in the diagram.Using the diagram and the implicit claims of the players, it should be clearthat I wins (s0; �x; �y) in 2G (for arbitrary �y) if I wins �x in G, and II wins (s0; �x; �y)in 2G if �x is lost or drawn (for I) in G. Thus the new game 2G is determinatefor positions (s0; �x; �y).However 2Gmay still contain positions which are drawn: Consider e.g. (l1; �x; �y)where �x and �y are drawn in G. Then II gets no chance of refuting the claim that�x is won in G, hence (l1; �x; �y) is also drawn in 2G. In order to allow II to defeatsuch false claims, the dashed edge is needed. By moving along m4 ! s0, II canwin and refute I by choosing the maximal �y in the move a! f .The �nal obstacle is that one has to verify that if �x is won in G, then IIcannot delay the game in�nitely using the edge m4 ! s0. Indeed j�xj decreaseseach time the game reaches m4:(a) if II chooses in a some �y with j�yj � j�xj, then I has to move along f ! kthereby enforcing that at least 1 round(�X) is played.(b) if II chooses j�yj < j�xj, then I chooses a new �x with j�xj = j�yj+1. Independentof the choice of II (g ! h1 or g ! i1), the new �x will be at least one smaller,when m4 is reached.Summarizing, this shows that (for arbitrary �y)� I wins (s0; �x; �y) in 2G i� �x is won in G, and� II wins (a; �x; �y) in 2G i� �x is lost or drawn in G.� No positions (s; �x; �y) in 2G are drawn.Putting everything together, we haveW-Datalog Theorem 3:4� W-DatalogG Theorem 3:6� W-DatalogG2 �W-Datalogwhich provesCorollary 3.7 (W-Datalog �W-Datalog2)For every well-founded Datalog program, there is an equivalent total program.

Acknowledgements. The third author would like to thank J�urgen Dix,Wolfgang May and Christian Schlepphorst for many fruitful discussions,and his co-authors for illuminating insights into the realm of �nite model theoryand games.References[AB94] K. R. Apt and R. N. Bol. Logic Programming and Negation: A Survey.Journal of Logic Programming, 19/20:9{71, 1994.[ABW88] K. R. Apt, H. Blair, and A. Walker. Towards a Theory of DeclarativeKnowledge. In J. Minker, editor, Foundations of Deductive Databases andLogic Programming, pages 89 { 148. Morgan Kaufmann, 1988.[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. AddisonWesley, 1995.[Che95] W. Chen. Query Evaluation in Deductive Databases with Alternating Fix-point Semantics. ACM Transactions on Database Systems, 20(3):239{287,1995.[Dix95] J. Dix. Semantics of Logic Programs: Their Intuitions and Formal Proper-ties. In A. Fuhrmann and H. Rott, editors, Logic, Action and Information.de Gruyter, 1995.[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Math-ematical Logic. Springer, 1995.[Gro94] M. Grohe. The Structure of Fixed-Point Logics. PhD the-sis, Universit�at Freiburg, 1994. http://logimac.mathematik.uni-freiburg.de/preprints/groh12-94-f1,2,3g.ps.[Imm86] N. Immerman. Relational Queries Computable in Polynomial Time. Infor-mation and Control, 68:86{104, 1986.[Kub95] M. Kubierschky. Remisfreie Spiele, Fixpunktlogiken und Normalformen.Master's thesis, Universit�at Freiburg, 1995. http://logimac.mathematik.uni-freiburg.de/preprints/kub95.ps.[Sch95] J. S. Schlipf. Complexity and Undecidability Results in Logic Programming.Annals of Mathematics and Arti�cial Intelligence, 15(III-IV), 1995.[VG89] A. Van Gelder. The Alternating Fixpoint of Logic Programs with Negation.In Proc. ACM Symposium on Principles of Database Systems, pages 1{10,1989.[VG93] A. Van Gelder. The Alternating Fixpoint of Logic Programs with Negation.Journal of Computer and System Sciences, 47(1):185{221, 1993.[VGRS88] A. Van Gelder, K. Ross, and J. Schlipf. Unfounded Sets and Well-FoundedSematics for General Logic Programs. In Proc. ACM Symposium on Prin-ciples of Database Systems, pages 221{230, 1988.

