
Games and Total Datalog: QueriesJ�org Flum a, Max Kubierschky a, Bertram Lud�ascher baInstitut f�ur mathematische Logik, Universit�at Freiburg,Eckerstr. 1, D-79104 Freiburg, Germany
um@uni-freiburg.debInstitut f�ur Informatik, Universit�at Freiburg,Am Flughafen 17, D-79110 Freiburg, Germanyludaesch@informatik.uni-freiburg.deAbstractWe show that the expressive power of Datalog: programs under the well-foundedsemantics does not decrease when restricted to total programs thereby a�rmativelyanswering an open question posed by Abiteboul, Hull, and Vianu [AHV95]. In par-ticular, we show that for every such program there exists an equivalent total programwhose only recursive rule is of the formwin(�X) move(�X; �Y);:win(�Y)wheremove is de�nable by a quanti�er-free �rst-order formula. Also for the nonin
a-tionary semantics we derive a new normal form whose only recursive rule simulatesa version of the game of life.Key words: Datalog, well-founded semantics, �xpoint logics, games.
1 IntroductionConsider the Datalog program�0 : q(X; Y) edge(X; Y)q(X; Y) edge(X; Y); q(Y; Z):? Expanded version of [FKL97].Preprint submitted to Elsevier Preprint 7 January 1998

Here, q is an intensional symbol of �0 (precise de�nitions are given in subse-quent sections). Given a database instance D = (D; edgeD) with universe Dand binary relation edgeD, �0 de�nes a sequenceq0; q1; q2; : : : (1)with q0 := ; and with qn+1 the set of pairs (a; b) 2 D �D such that q(a; b) isthe head of a ground instance of a rule of �0, whose body is true in D, if qnis taken as the (actual) interpretation of q. (One easily veri�es that qn is theset of pairs (a; b) such that in D there is a path from a to b of length � n.)Since q only occurs positively in �0, the sequence in (1) is increasing, so iteventually becomes constant, the constant value qt being the truth set of �0in D. (Clearly, qt is the transitive closure of edgeD.) The query associatingwith D the corresponding binary relation qt is denoted by (�0; qt).Consider the Datalog: (Datalog with negation) program� : q(X; Y) r(X; Y; Z);:q(V;X)q(X; Y) :s(X; Y; Z); r(X; Y; Z); q(X; Y);:q(Y; Y):Now, q occurs negatively and, contrary to the case of Datalog programs, thereare various possible semantics leading to di�erent queries. In this paper weconsider the nonin
ationary semantics (NI-semantics) (cf. [AV91]) and thewell-founded semantics (WF-semantics) [VG93]. In both, � induces a sequenceq0; q1; : : : of subsets of D �D (see below). Setqt := f(a; b) j there is an n0 s.t. (a; b) 2 qn for all n � n0g(qt, the truth set, consists of those pairs that eventually are in all members ofthe sequence),qf := f(a; b) j there is an n0 s.t. (a; b) =2 qn for all n � n0g(qf , the false set, consists of those pairs that eventually are outside all membersof the sequence), and qu := (D �D) n (qt [qf) the unde�ned set.For a �xed semantics, we say that � is total, if qu = ; in all databases; twoprograms are equivalent, if they have the same truth set in all databases.For the NI-semantics and the WF-semantics, we show that2

� every Datalog: program is equivalent to a total one, and� for every Datalog: program � there is another program having as truth setthe false set of �.Moreover, for both semantics we derive normal forms of game-theoretic
avour.So, in both semantics, from an extensional point of view, we have the sameexpressive power, if we restrict to queries (�; qt), where � is a total programor, looking at the other extreme, if we admit as queries (�; qt), (�; qf), and(�; qu) with their obvious meanings.Let us recall the semantics: In the NI-semantics the stages qn are de�nedin exactly the same way as for Datalog programs (but now, in general, thesequence qn is not increasing, since q may occur negatively).We come to the WF-semantics. Consider the Datalog: program � above.Replace all negative occurrences of q by a new variable q0 (keeping the negationsymbol), thus obtaining the program�0 : q(X; Y) r(X; Y; Z);:q0(V;X)q(X; Y) :s(X; Y; Z); r(X; Y; Z); q(X; Y);:q0(Y; Y):In �0 the symbol q0 is extensional, hence, �0 is a Datalog program. Now, ina database instance D = (D; rD; sD), the stages qn of the evaluation of theoriginal program � are de�ned by induction: q0 := ; and qn+1 is the truth setof q of the Datalog program �0 in (D; qn) (i.e., taking qn as interpretation ofq0). Hence, the evaluation of � in the WF-semantics corresponds to a nested�xpoint.While for the NI-semantics the results mentioned above (besides the game-theoretic normal form) are consequences of known facts and are more or lessexplicit in the literature (see [AS91], [Gro92], [EF95]), the corresponding re-sults for the WF-semantics are new; in particular, they solve an open problemstated in [AHV95]. The parts on the NI-semantics (Section 3) and the WF-semantics (Section 4) may be read independently.For the WF-semantics we use a normal form for least �xpoint logic LFP dueto Immerman [Imm86] to show that every program is equivalent to one whoseonly recursive rule is of the well-known formwin(�X) move(�X; �Y);:win(�Y): (G)3

For a database instance (D;moveD), the elements (more precisely, the tuples oflength equal to length(�X)) are viewed as the positions in a game between twoplayers I and II that move alternately. Read move(�X; �Y) as \from position�X a player can move to position �Y ". A player loses in �X if she cannot move;she wins in �X if she can move to a position which the opponent loses. Thenin the WF-semantics, wint is the set of positions �X such that I has a winningstrategy for the game starting at �X, while winf are the positions for which IIhas a winning strategy. winu are the drawn positions for which neither playerhas a winning strategy.Consider, for example, a game where D = fa; b; c; dg and moveD = f(a; b),(b; a), (b; c), (c; d)g. Then wint = fcg, winf = fdg, and winu = fa; bg. Infact, a and b are drawn: a player in b can move to a (moving to c would leavethe opponent in a won position), thus avoiding to lose by enforcing a gameof in�nite length. Now our main result concerning the WF-semantics can berephrased as Every game is equivalent to a draw-free game.The achieved normal form retroactively justi�es the ubiquity of the win-moveexample in the literature.Note that the NI-semantics and WF-semantics coincide for Datalog: programshaving the normal form (G) above. Thus, in terms of expressive power, thenested �xpoint process is super
uous. However in general, the semantics dis-agree as can be seen from the programq(X) q(X)q(X) :q(X):2 PreliminariesA database schema (or signature) � consists of �nitely many relation symbolsr1; : : : ; rk with associated arities arity(ri) � 0 and of �nitely many constantsc1; : : : ; cs. Let dom be a �xed and countable underlying domain. A databaseinstance (database) over � is a �nite structure D = (D; rD1 ; : : : ; rDk ; cD1 ; : : : ; cDs)with �nite universe D � dom, relations rDi � Darity(ri) and elements cDi 2 D.Let inst(�) denote the set of all database instances over �. A k-ary query qover � is a computable function on inst(�) such that (i) q(D) is a k-ary relationon D, and (ii) q is preserved under isomorphisms, i.e., for every isomorphism� of D, q(�(D)) = �(q(D)). Thus, a query de�nes a k-ary global relation oninst(�). 4

A query language L is a set of expressions together with a semantics whichmaps every expression ' 2 L to a query (over some �). The expressive powerof a query language L is the class of all queries de�nable in L. ' 2 L1 isequivalent to 2 L2 if they express the same query. We say that L1 is at mostas expressive as L2, denoted by L1 � L2, if for every expression in L1 thereis an equivalent expression in L2. Both languages have the same expressivepower, written as L1 � L2, if L1 � L2 and L2 � L1.Notation. Following logic programming notation, we write domain variablesin upper case like X;X 0; Y etc. Relation symbols like r1; : : : ; rk; win;move aredenoted in lower case.�T denotes a vector of n terms T1; : : : ; Tn (variables or constants). For a termT we denote by eT the sequence T; : : : ; T ; its length will be clear from thecontext. If r is a relation symbol of arity n and T1; : : : ; Tn are terms thenr(T1; : : : ; Tn) is an atom.Datalog(:) Programs. A Datalog: program � is a �nite set of rules of theform H B1; : : : ; Bnwhere the head H is an atom and all Bi in the body are literals (i.e., atoms,negated atoms, equalities, or negated equalities). Relational symbols occurringin some head of � are called intensional and form the signature idb(�), allother relations are extensional. The extensional symbols together with the con-stants form the signature edb(�). For notational simplicity, we often assumethat � only contains one intensional relation symbol, usually q.In a Datalog program, only relations from edb(�) may occur negated in bodiesof rules. 1Let D be a database over edb(�). A ground instance of a rule is obtained bysubstituting elements from D for all variables. ground(�; D) denotes the setof all such ground instances of rules of �.Fixpoint Semantics for Datalog. Fix a Datalog program � with a uniqueintensional symbol q of arity m and a database D over edb(�). The operator� (= �(�;D)) maps every subset I of Dm to a subset of Dm:1 In [AHV95] such programs are called semipositive, while (positive) Datalog pro-grams contain no negation at all. 5

�(I) := f�a j q(�a) B1; : : : ; Bn 2 ground(�; D) and B1; : : : ; Bn are true in (D; I)g:Here, (D; I) is the database instance over the signature edb(�) [fqg thatextends D by interpreting q as the set I.Then � induces a sequence q0; q1; : : : of subsets of Dm given byq0 := ;; and qn+1 := �(qn):Clearly, q0 � q1 � q2 � � � �In Datalog, the truth set qt is given byqt = [n�0 qn:We associate to � the query which maps the database instance D to qt. Wedenote this query by (�; qt).3 NI-Semantics for Datalog: Programs 2When applied to Datalog: programs, the above �-operator also induces asequence q0; q1; : : : of subsets of Dm. However, since negated intensional atomsmay occur in the bodies, in general the sequence is not increasing. For the NI-semantics, we de�ne the truth set qt, the false set qf , and the unde�ned setqu byqt := f�a j there is an n0 s.t. �a 2 qn for all n � n0g;qf := f�a j there is an n0 s.t. �a =2 qn for all n � n0g;qu :=Dm n (qt [qf):Now, in NI-Datalog the program � gives rise to three queries, (�; qt), (�; qf),and (�; qu) with their obvious meanings. � is called total, if for all databaseinstances we have that qu = ; or, equivalently, for some n,qt = qn = qn+1 = : : : = qcf ;2 As already remarked in the introduction, the reader only interested in the well-founded semantics may skip this section.6

where qcf denotes the complement of qf with respect to Dm.NI-Datalog2 is the restriction of NI-Datalog to total programs and to thecorresponding queries (�; qt).The following theorem is a straightforward generalization of a result of [AS91](cf. also [Gro92])).Theorem 1 (NI-Datalog � NI-Datalog2) For every NI-Datalog program� there is an equivalent total program. Moreover, there is an equivalent totalprogram having as truth set the false set of �.Proof (Sketch) Let � be a Datalog: program and (for simplicity) q itsunique intensional symbol, say of aritym. Given a database instance D denote,as above, by qn the n-th stage of the iteration process. Since the universeD of D is �nite, the sequence q0; q1; : : : must become periodic, so there aren0 � 0 and l0 � 1 such that qn = qn+l0 holds for all n � n0. Choose k s.t.l := k � l0 � n0. Then ql = ql+k�l0 = q2�l.Clearly, if q2n = qn then� q0; q1; : : : eventually gets constant i� qn = qn+1.� qt = qn \ � � � \ q2n�1 = Tk�0 qn+k.� qf = qcn \ � � � \ qc2n�1 = Tk�0 qcn+k.(Here, for I � Dm, we denote by Ic the complement of I with respect to Dm.)These facts can be used to obtain a total program with the same truth set as� and a total program whose truth set is the false set of �. 2Now, we show that for every NI-Datalog program there is an equivalent totalone in the form of a game resembling the game of life [Gar70] (recall that twoprograms are equivalent if they have the same truth set for all databases).Theorem 2 (NI-Datalog � NI-DatalogGL2) For every NI-Datalog programthere is an equivalent total one whose only recursive 3 rule has the formalive(�X) r(�X; �V); s(�X; �W); alive(�V);:alive(�W):Intuitively, the rule says that cell �X is alive in the next generation (= stage) ifthere is an r-neighbour �V and an s-neighbour �W of �X such that in the actualgeneration �V is alive and �W is dead.3 A rule r is recursive if some literal in the body of r depends|directly or indirectlyvia other rules|on the atom in the head of r, cf. [AHV95].7

To obtain this result we improve a known normal form for partial �xpoint logicPFP.Partial Fixpoint Logic. PFP-formulas are obtained by repeated appli-cations of �rst-order operations f:;^;_; 8; 9g and the �xpoint operator FPstarting from atoms and equations; that is, we add to the �rst-order formationrules the rule '[FPq(�X) '] �T (FP)where length(�X) = length(�T) = arity(q). The semantics D j= is givenas usual (cf. [EF95]). In particular, for (�Y ; �Z) = [FPq(�X) '(q; �X; �Z)] �Y and�a;�b 2 D: D j= (�a;�b) i� �a 2 qt;where the truth set qt is de�ned byqt := f �d 2 D j there is some n0 s.t. �d 2 qn for all n � n0gand where q0 := ; and qn+1 := f �d 2 D j D j= '(qn; �d;�b)g.Every PFP-formula (�Y) de�nes a query q as follows:q : D 7! f �d j D j= (�d)gIt is well-known that NI-Datalog � PFP (e.g., see [EF95]).Every PFP-formula is equivalent to a formula which only contains one �xpointoperator FP. Moreover, by increasing the arity of the second-order variable,Grohe [Gro94] has shown that the �xpoint operator can be rewritten in such away that an element of a new stage is witnessed by two elements, one belong-ing to the preceding stage, the other one belonging to its complement. Moreprecisely, for every PFP-formula (�Y) there is an equivalent formula of theform 9U [FPq(�X) (0(�X) _ 9 �V 9 �W (q(�V) ^ :q(�W) ^ 1(�X; �V ; �W)))] �Y eU (�)where 0; 1 are quanti�er-free and do not contain q and where eU = U; : : : ; Ufor a variable U (thus, arity(q) = length(�X) = length(�Y) + length(eU)).Moreover, one can assume that the formula (�) is total (for all databasesD the false set qf is the complement of the truth set qt) and nontrivial (forall D, we have ; 6= qn 6= Darity(q) for all n � 1) 4 .4 Although the answer to the original query q may be ; or Darity(q).8

We improve this normal form by replacing the ternary relation between �X, �V ,and �W by two binary relations:Proposition 3Every PFP-formula (�Y) is equivalent to a total one of the form9U [FPq(�X) (0(�X)_ 9 �V 9 �W (q(�V) ^ :q(�W) ^ 1(�X; �V) ^ 2(�X; �W)))] �Y eU �Y eU (+)where 0; 1, and 2 are quanti�er-free and do not contain q.We postpone the proof of this proposition and �rst show Theorem 2:Proof of Theorem 2. Let � be a NI-Datalog program. Consider an equiva-lent PFP-formula which we may assume to be given in the form (+). But theformula (+) is equivalent to a NI-Datalog program �0 of the desired form:�0 : q(�X) 0(�X)r(�X; �V) 1(�X; �V)s(�X; �W) 2(�X; �W)q(�X) r(�X; �V); s(�X; �W); q(�V);:q(�W)answer(�Y) q(�Y ; eU; �Y ; eU):More precisely, if 0(�X) has an equivalent disjunctive normal form Wki=1('i;1(�X)^� � � ^'i;mi(�X)); one has to replace the rule \q(�X) 0(�X)" above by k rulesq(�X) '1;1(�X); : : : ; '1;m1(�X)...q(�X) 'k;1(�X); : : : ; 'k;mk(�X)and similarly for the rules de�ning r and s. 2Proof of Proposition 3. Assume that the PFP-formula (�Y) has the Grohenormal form9U [FPq(�X) (0(�X) _ 9 �V 9 �W (q(�V) ^ :q(�W) ^ 1(�X; �V ; �W)))] �Y eUand that is total and nontrivial. Let arity(q) = m. Then (�Y) is equivalent9

to a formula of the form9U [FPr(bX) ((0(�X1) ^ �X1= �X2)_ 9 bV 9cW (r(bV) ^ :r(cW) ^ �1(cX; bV) ^ �2(cX; cW)))] �Y eU �Y eUwhere arity(r) = 2m, cX = �X1 �X2, bV = �V1 �V2, cW = �W1 �W2, and length(�Xi) =length(�Vi) = length(�Wi) = m for i = 1; 2.The equivalence holds if �1 and �2 are arranged in such a way that the fol-lowing holds for all databases and all n � 1:r2n�1 = f(�a; �a) j �a 2 qng [(qn�1 � qcn�1)r2n = f(�a; �a) j �a 2 qng [(qn � qcn);(then, rt = f(�a; �a) j �a 2 qtg [(qt � qct)).This is achieved by setting�1 := (�X1 = �X2 ! (1(�X1; �V1; �V2) ^ �V1 6= �V2))^ (�X1 6= �X2 ! (�X1 = �V1 = �V2))�2 := (�X1 6= �X2 ! (�X2 = �W1 = �W2)): 2Remark. By passing in the proof to a relation r of higher arity (and a longersequence eU), one can obtain a normal form 9U [: : :] �Y eU , where the formulainside the brackets has the same form as in (+) of Proposition 3.4 WF-Semantics for Datalog: ProgramsAs mentioned in the introduction, the evaluation of Datalog: programs underthe WF-semantics corresponds to a nested �xpoint, also called alternating�xpoint [VG93]. It is computed as follows:Given a Datalog: program �, replace every negative occurrence of q 2 idb(�)by the new relation symbol q0 (keeping the negation symbol). Since q0 does notoccur in the head of any rule, it is extensional, so the resulting program �0 is aDatalog program. The stages qn of � for a given database D are de�ned usingthe program �0: q0 := ;, and qn+1 is the result of evaluating �0 in (D; qn),i.e., where q0 is interpreted by qn. As above, the set qt, qf , and qu are de�ned,giving rise to theWF-Datalog queries (�; qt), (�; qf), and (�; qu), respectively.10

One easily veri�es thatq0 � q2 � q4 � � � � � q5 � q3 � q1 ;so qt = [n�0 q2n ; and qf = (\n�0 q2n+1)c :This was used by van Gelder [VG93] to show 5Theorem 4 (WF-Datalog � LFP)For every WF-Datalog query there is an equivalent LFP-formula.LFP-formulas (for least �xpoint) are de�ned like PFP-formulas except that aproviso is added to the rule (FP) above, namely, the variable q may only occurpositively in the formula '. This implies that all LFP-formulas are total (thetruth set always being the least �xpoint of the corresponding operation).Let WF-Datalog2 be the restriction of WF-Datalog to total programs andqueries of the form (�; qt) (recall that � is total, if qu = ; for all databases Dand all q 2 idb(�)). In [AHV95], Abiteboul et. al. raised the question whetherone can �nd for each WF-Datalog program an equivalent total one. In otherwords, is WF-Datalog � WF-Datalog2? (WF-Datalog2 � WF-Datalog holdstrivially.) When restricted to ordered databases, this is known to be the case,since strati�ed Datalog is equivalent to LFP on ordered databases, and qu = ;for strati�ed Datalog programs evaluated under the WF-semantics (see, e.g.,[AHV95]).As we will show in the sequel, the question can also be answered a�rmativelyin the absence of order. First, using the above result of van Gelder and a normalform for LFP due to Immerman, we show that every WF-Datalog programcan be transformed into a normal form which corresponds to a certain game.Finally, we establish our main tool, the reduction of games to draw-free games.4.1 Win-Move GamesDe�nition 5 (Win-Move Games) A win-move game (or game for short)is a triple G = (V;M; v0) where V is a �nite set of positions (or vertices),M � V � V is a set of possible moves, and v0 2 V is the distinguished startposition of G.5 In [VG93] it was also shown that for every LFP-formula there is an equivalentWF-Datalog query (� ; qt), i.e., LFP �WF-Datalog.11

The game G is played with a pebble by two players I and II in rounds. Eachround consists of two moves. Initially, I starts the game from the start positionv0. A player can move from x to y i� (x; y) 2 M . A player loses in x, if shecannot move; she wins in x, if she can move to a position in which the opponentloses.A position x 2 V is won for a player if the player can win every game startingat x, no matter how the opponent moves. Conversely, x 2 V is lost for a playerif the opponent can always win the game starting at x, no matter how the playermoves. A position x is drawn if x is neither lost nor won. G = (V;M; v0) iswon/lost/drawn if v0 is won/lost/drawn for I.If x is won, the length of x, denoted jxj, is the number of rounds which arenecessary for I to win, provided both players play optimal (i.e., each playertries to win as quickly or to lose as slowly as possible). If x is lost or drawn,we let jxj :=1.A game is called draw-free if no position in V is drawn. Note that a gamemay be determinate, i.e., the start position v0 is either lost or won, yet it maycontain positions x which are drawn.Observe that the presence of cycles inM is necessary but not su�cient for theexistence of drawn positions in G. For example, if M = f(a; b); (b; a); (b; c)gthen b is won, whereas a and c are lost. If the move (c; d) is added to M thend is lost, c is won, and a and b are drawn.Games have a very elegant and intuitive representation in WF-Datalog in theform of the famous win-move example. Indeed this example has always beenused to demonstrate that WF-Datalog handles negation in a nice and intuitiveway (but note that the WF-semantics and the NI-semantics coincide for thisclass of programs).De�nition 6 (WF-DatalogG) Let WF-DatalogG be the class of WF-Datalogqueries obtained from programs � which have a single recursive rule of the formwin(�X) move(�X; �Y);:win(�Y)where �X and �Y have the same arity � 1, and a rule of the formanswer(�V) win(�T)where �V are variables occurring in �T . All other rules of � are nonrecursive,contain neither win nor answer, and are semipositive (i.e., negation is allowedonly in front of edb relations).Let WF-DatalogG2 be the restriction of WF-DatalogG to total programs andqueries (�; qt). 12

Remark. Consider the following WF-DatalogG program�Game : win(X) move(X; Y);:win(Y)answer win(v0):Since every game G = (V;M; v0) is a �nite structure, it can be used as inputto �Game. One easily veri�es that �Game represents such games in the sensethat v0 2 8>>>>><>>>>>: qtqfqu
9>>>>>=>>>>>; , G is 8>>>>><>>>>>: wonlostdrawn9>>>>>=>>>>>; :4.2 DiagramsAs an auxiliary notation for games, we make use of diagrams as those depictedin Fig. 1. We assume that with every variable X we have associated a variableX 0 in a one-to-one fashion.De�nition 7 (Diagrams) A diagram d consists of a �nite set of squaresand a �nite set of (possibly labeled) arrows between squares. Every diagramcontains exactly one distinguished start square s0. In case an arrow is labeled,the label has one of the forms\'"; \ 9 �X 0 "; or \ 9 �X 0" ;where(1) ' and are quanti�er-free, and(2) ' only contains unprimed variables.If \9 �X 0" or \9 �X 0 " (for some) occurs in d, then �X are bound variablesof d. All other unprimed variables of d are called parameters of d.Example 8 In Fig. 1, the diagram d1 contains the bound variable Y and theparameter X, while d2 has no parameters.Playing Games with Diagrams. Given a �xed database D, every diagramd with parameters among �U induces a game Gd;�u (�u are the �xed domain valuesused for the variables �U). Gd;�u is played as follows:13

d1 = c ds0 a b e f g9Y 0 edge(Y;X) good(Y)
d2 = c ds0 a b e f g9Y 0 edge(Y;X) 9X 0 X 0 = YFig. 1. Two diagramsLet Sq = fs0; : : : ; smg be the squares and �X = X1; : : : ; Xn the bound variablesof d. The game is played with n domain pebbles (lying on the current domainvalues �x 2 Dn assigned to �X) and an additional square pebble (lying on thecurrent square si 2 Sq).Initially, the square pebble is on the start square s0 of d and the domainpebbles �X are on a �xed element cD. 6 The players move alternately withplayer I starting the game. In each move, a player may move the pebblesaccording to the rules induced by the diagram: the square pebble has to bemoved along an arrow of d. Additionally, the domain pebbles have to be movedin accordance with the constraints given by the labels:More precisely, the positions of Gd;�u areV = f(s; �x) j s 2 Sq; �x 2 Dng :The start position of Gd;�u is (s0; ec) where s0 is the start square of d. The movesbetween positions are given by the arrows in d: there is a move from (s; �x) to(s0; �x0) in Gd;�u if(1) there is an (unlabeled) arrow s�!s0 in d and �x0 = �x,(2) there is an arrow s '�! s0 with quanti�er-free ' such that D j= '(�x) and�x0 = �x, or(3) there is an arrow s ��! s0 where � contains quanti�ers and6 To simplify the presentation, we assume that there is at least one constant cwhose interpretation in D is cD. 14

(a) for all Xi such that X 0i is not 9-quanti�ed in �, we have x0i = xi, and(b) if � contains a quanti�er-free formula '(�X; �X 0), then D j= '(�x; �x0).Theorem 9 For every diagram d with bound variables �X there is a WF-DatalogGprogram �d with move relation move(S; �X; S 0; �X 0) such that for �d(s; �a) 2 8>>>>><>>>>>: qtqfqu
9>>>>>=>>>>>; , (s; �a) is 8>>>>><>>>>>: wonlostdrawn9>>>>>=>>>>>; in Gd;�u :

Proof The translation is straightforward and should be clear from Fig. 2which shows how d2 from Fig. 1 is encoded. 7 2move(s0;X; Y; a;X 0; Y 0) X 0 = X; Y 0 = Ymove(a;X; Y; b;X 0; Y 0) X 0 = Xmove(b;X; Y; c;X 0; Y 0) X 0 = X; Y 0 = Ymove(b;X; Y; e;X 0; Y 0) X 0 = X; Y 0 = Ymove(c;X; Y; d;X 0; Y 0) edge(Y;X); X 0 = X; Y 0 = Ymove(e;X; Y; f;X 0; Y 0) X 0 = X; Y 0 = Ymove(f;X; Y; g;X 0; Y 0) X 0 = Y; Y 0 = Ymove(g;X; Y; s0;X 0; Y 0) X 0 = X; Y 0 = Ywin(S;X; Y) move(S;X; Y; S0;X 0; Y 0); :win(S0;X 0; Y 0)answer (V) win(s0; V; Y):Fig. 2. Encoding of diagram d2 in WF-DatalogGIn the following, we show how one can �nd for every WF-Datalog query anequivalent query from WF-DatalogG, i.e., in the form of a game. As a �rststep, we show how to encode �rst-order formulas as games:Theorem 10For every �rst-order formula (�U) there is a diagram d such that(1) I wins Gd ;�u , D j= (�u):7 Note that the constants s0; a; b; : : : denoting squares of a diagram do not belongto the database schema in question. Here and in the following, one can avoid suchnew constants c1; : : : ; cr using new variables Z1; : : : ; Zr and letting all tuples �z 2 Drwith zi 6= z1 = : : : zi�1 = zi+1 = � � � = zr take over the role of ci.15

(2) Gd ;�u is draw-free.Proof We de�ne d by induction on the structure of . Note that s0 denotesthe start square of the corresponding diagram. In the inductive de�nition ofdiagrams, arrows pointing to a subdiagram are connected to the start squareof this subdiagram.� if is atomic then d := s0 Clearly, I wins Gd ;�u i� D j= (�u).� if = :' then d := s0 d'Note that I wins (loses) Gd ;�u i� II loses (wins) Gd';�u. Here, we use thatGd';�u is draw-free by induction hypothesis.� if = ' ^ � then d := d's0 d�I wins Gd ;�u i� she can win both the game for ' and the game for � (ifone of them is lost for I, then II could choose the corresponding arrow andwin).� if = 9X ' then d := s0 d'9X 0In this case, I wins Gd ;�u i� there is a value a 2 D such that I wins Gd';�ua.The game is draw-free since the move graph of Gd ;�u is acyclic. 2Note that the squares of the d can be 2-colored such that player I may onlymove along arrows from white to black squares, while II may only use arrowsfrom black to white squares (cf. Fig. 1). Moreover, by the above construction,it is clear that if an atomic formula ' occurs only positively (negatively) in ,then arrows marked with \'" can only be used by player I (II).We want to extend part (1) of Theorem 10 to LFP-formulas. For this purpose,we need the following theorem which is due to Immerman [Imm86]:Theorem 11 Every LFP-formula is equivalent to a formula of the form[LFPq(�X) ']ecwhere ' is �rst-order. 16

We will use Theorem 11 to proveTheorem 12 For every LFP-formula (�U) there is a diagram d such thatI wins Gd ;�u , D j= (�u):Proof Let 2 LFP. By Theorem 11 we may assume that (�U) = [LFPq(�X) '(�U; �X)]ecwhere ' is �rst-order and positive in q. By Theorem 10 there is a diagram d'such that I wins Gd' ;�u �x , D j= '(�u; �x). We modify d' as follows to obtainthe diagram d :Let A be an arrow of d' which is marked with \q(�T)" (q being the relationsymbol bounded by the LFP-operator). Since 2 LFP, q occurs only posi-tively in and by the construction of d', A can only be used by player I (i.e.,points from a white to a black square). In other words, I has the obligationto proof that q(�T) holds. This is achieved in the new diagram d as follows:� The label of A is replaced by \9 �X 0 �X 0 = �T", and� there is a new unlabeled arrow from the black square in which A ends tothe start of d'.This construction is illustrated by Example 13 below and d2 in Fig. 1.Let qk be the k-th iteration of q in . By induction on k one easily veri�esthat:� If �a 2 qk then player I has a winning strategy for Gd ;�a where she uses thestart square at most k times. In the induction step, I uses a winning strategyfor the game Gd';�a in (D; qk�1), i.e., taking qk�1 as the interpretation of q in'.Conversely, if �a =2 qt then player II can prevent I from winning Gd ;�a byrepeatedly using a winning strategy for Gd';�a in (D; qt).Finally, let �a = ecD and the claim follows. 2Note that in general, the game d constructed for a LFP-formula containsdrawn positions, i.e., if D 6j= (�u) then II can prevent I from winning butmay not be able to win Gd ;�u either. 17

Example 13 (Good Nodes [AHV95]) Consider the LFP-formula (U) = [LFPgood(X) 8Y (edge(Y;X)! good(Y)| {z }'(X)]UIt computes the \good nodes" of a directed graph, i.e., those that cannot bereached from a cycle. The diagram d1 in Fig. 1 corresponds to the subformula'(X) of (according to the proof of Theorem 10) and d2 in Fig. 1 correspondsto (according to the proof of Theorem 12).By applying Theorem 12 and Theorem 9 we directly obtainCorollary 14Every LFP-formula is equivalent to a WF-DatalogG query of the form (�; qt).Using Theorem 4 this impliesCorollary 15 (WF-Datalog �WF-DatalogG) Every WF-Datalog query (ofany of the forms (�; qt), (�; qf), or (�; qu)) is equivalent to a WF-DatalogGquery of the form (�; qt). In particular, WF-Datalog �WF-DatalogG.Remark. In [FKL97] an alternative proof was given using a normal form forLFP which is due to Grohe [Gro94] and which allows a very simple translationinto a game. In contrast, the proof presented above uses the normal form ofImmerman [Imm86] which is more known and easier to obtain.4.3 Reduction from Games to Draw-Free GamesIn this section, we show that WF-DatalogG � WF-DatalogG2 , i.e., for everyWF-Datalog query, there is an equivalent query in WF-DatalogG2 . By Corollary15 every WF-Datalog program corresponds to a game. It remains to showthat for each such game, an equivalent draw-free game can be constructedand represented by a WF-DatalogG program.Theorem 16 (WF-DatalogG �WF-DatalogG2)For every WF-DatalogG query there is an equivalent query in WF-DatalogG2 .Proof First, we present an informal proof emphasizing the idea of the con-struction. 8 Technical details are given afterwards.8 The reduction presented is due to [Kub95] which also contains the details of aproof of a normal form for LFP implying Theorem 16.18

The main problem consists in detecting and avoiding drawn positions. In theabsence of an order on the domain it seems particularly di�cult to limit thelength of the game in order to eliminate drawn positions, e.g. we cannot usea counter for that purpose.The basic idea is to limit the length of a game by comparing it to a gameof maximal length. Two games are compared by playing them independentlybut synchronously. Thus, we construct a new game 2G which simulates thesetwo games on the original structure G. To do so, we need two pebbles|onefor each game in G. Call these the clock pebble �Y (on position �y in G) andthe verify pebble �X (on position �x in G). 9 The game played with the clockpebble is used to limit the length of the game played with the verify pebble.The latter plays the role of the pebble in the original game G.Initially, player I claims that the verify pebble is on a won position, i.e.,j�xj <1 (cf. De�nition 5). II places the clock pebble on �y and claims that j�yjis the maximal length of a won position in the game. If this is true, I and IIcan compare j�xj and j�yj and thus verify the original claim of I. The di�cultyremains that both players have to agree upon the choice of �y. To solve this,one has to design 2G in such a way, that II can be disproved if she \cheats"by choosing a �y which is not maximal.The new game 2G is constructed as follows (cf. Fig. 4): We use two macros1 round(�X) and 1 round(�Y) to denote a round of moves of the pebbles on �x and�y in G, respectively (Fig. 3). Note that in the simulated game G, I moves �rstin 1 round(�X) while II moves �rst in 1 round(�Y).
z1 : : : z41 round(�X) := z1z2z3z4 z1 : : : z41 round(�Y) := z1z2z3z4

9 �X0 move(�X; �X0)9 �X0 move(�X; �X0) 9 �Y 0 move(�Y ; �Y 0)9 �Y 0 move(�Y ; �Y 0)Fig. 3. Macro de�nitionsLike above, the diagram in Fig. 4 de�nes a set of semipositive nonrecursiverules for the new relationmove(S; �X; �Y ; S 0; �X 0; �Y 0). Thus, if the move relationof the original game G (used in the macros of Fig. 3) is n-ary, the new move9 Thus, we abstract from the fact that �X is a tuple of pebbles, and simply call �Xa pebble in 2G; analogously for �Y . 19

s0a b c d1 : : : d41 round(�X) ef gh1 : : : h41 round(�X) i1 : : : i41 round(�Y)jkl1 : : : l41 round(�X)m1 : : :m41 round(�Y)

9 �Y 0 9 �X0 9 �X0 9 �X09 �Y 0 �X0 �Y 0 = �Y �X

Player Is0 ! a j�xj <1, \the length of �xis �nite, i.e., �x is won"b! c 9�x : j�xj = 1, \I show youa new �x which is won in1 round"f ! k j�xj � j�yj, \�y is not shorterthan �x"f ! g j�yj <1;9�x : j�xj = j�yj+1,\�y is �nite, but not ofmaximal length: I showyou a new �x which is 1round longer"j! k j�xj � j�yj, \�y is not shorterthan �x"l1 ! l2 j�xj � j�yj, \I can win intime"

Player IIa! b :9�x : j�xj < 1, \there is no �xin G which is won"a! f 9�y : j�yj < 1; j�yj maximal,j�xj > j�yj, \�y is �nite, of max-imal length and shorter than�x"k! l1 j�xj > j�yj, \you can't win on �xin time"g! h1 j�xj > j�yj + 1, \�x is more than1 round longer than �y: I giveyou a lead of 1 round �x andyou lose"g! i1 j�xj � j�yj, \your chosen �x is notlonger than my �y: let us swapthe pebbles on �x and �y andgive me a lead of 1 round in�y0: then you lose on �x againstthe clock"Fig. 4. Draw-free game 2G and implicit claims of I and II.20

relation of 2G is 2(n+1)-ary. For a given answer relation answer(�V) win(�X)in �G, the new answer relation of �2G is de�ned asanswer(�V) win(s0; �X; �Y):It is easy to see that I wins in 1 round(�X) if j�xj = 1, and II wins 1 round(�Y) ifj�yj = 1.Assume for the moment that the dashed edge from m4 to s0 in Fig. 4 is absent.The loop l1 ! m4 ! l1 compares the lengths of �x and �y: I wins this comparisonif j�xj <1 and j�xj � j�yj, while II wins if j�yj <1 and j�yj < j�xj.To get a better understanding of the construction of 2G, we explain the dia-gram in Fig. 4 as a dialog between I and II, where each move corresponds toa claim of the moving player. Observe that each claim of a player contradictsthe previous claim of the opponent, and that each false claim can indeed bedisproved using the corresponding moves in the diagram.Using the diagram and the implicit claims of the players, it should be clearthat I wins (s0; �x; �y) in 2G (for arbitrary �y) if I wins �x in G, and II wins(s0; �x; �y) in 2G if �x is lost or drawn (for I) in G. Thus the new game 2G isdeterminate for positions (s0; �x; �y).However 2G may still contain positions which are drawn: Consider, for exam-ple, (l1; �x; �y) where �x and �y are drawn in G. Then II gets no chance of refutingthe claim that �x is won in G, hence (l1; �x; �y) is also drawn in 2G. In order toallow II to defeat such false claims, the dashed edge is needed. By movingalong m4 ! s0, II can win and refute I by choosing the maximal �y in themove a! f.The �nal obstacle is that one has to verify that if �x is won in G, then II cannotdelay the game in�nitely using the edge m4 ! s0. Indeed j�xj decreases eachtime the game reaches m4: If II chooses in a some �y with j�yj � j�xj, then Ihas to move along f ! k thereby enforcing that at least 1 round(�X) is played.Otherwise, if II chooses j�yj < j�xj, then I chooses a new �x with j�xj = j�yj + 1.Independent of the choice of II (g! h1 or g! i1), the new �x will be at leastone smaller, when m4 is reached.We turn to the formal proof. In the sequel, if we say that \player I (II)achieves : : : ", we mean that there is a strategy such that either player I (II)wins, or situation \: : : " occurs.The following lemmas are immediate:21

L1: Let j�xj � k and I starts to move (from the �rst square) in a subdia-gram 1 round(�X). Then I achieves that j�xj � k � 1 on the exit square (of1 round(�X)). In particular, I wins if k = 1.L2: Let j�xj � k > 1 and I starts in a subdiagram 1 round(�X). Then II achievesthat j�xj � k � 1 on the exit square. If j�xj =1, II achieves that j�xj =1on the exit square.L3: Let j�yj � k and I starts in a subdiagram 1 round(�Y). Then II achievesthat j�yj � k � 1 on the exit square. In particular, II wins if k = 1.L4: Let j�yj � k > 1 and I starts in a subdiagram 1 round(�Y). Then I achievesthat j�yj � k � 1 on the exit square. If j�yj = 1, I achieves that j�yj =1on the exit square.L5: (d1; �x; �y) is won , j�xj = 1.L6: (b; �x; �y) is won , 9�x j�xj <1. (Note that 9�x j�xj <1 , 9�x j�xj = 1.)The following lemma is shown by induction on k:L7: Let j�xj � k. We simultaneously show that (s; �x; �y) is won : : :(i) : : : if s = l1 and j�yj � k: I achieves that if m4 is reached, thenj�xj � k � 1 and j�yj � k � 1. If II moves back to l1, then I wins bythe induction hypothesis; if II moves to s0, then I wins using (v) fork � 1.(ii) : : : if s = h1 and j�yj � k � 1: I achieves that if h4 is reached, thenj�xj � k � 1 and wins by (i) for k � 1.(iii) : : : if s = i1 and j�yj > k: I achieves that if i4 is reached, then j�yj � kand wins using (i).(iv) : : : if s = f: If j�yj � k then I moves to k and wins by (i). Otherwise, ifj�yj < k then I moves to g and chooses some �x such that j�xj = j�yj+1.This is possible since by assumption j�xj = k > j�yj, hence �y is notmaximal. Now if II moves to h1 then I wins by (ii) for some smallerk. If II moves to i1 instead, then after the move j�yj = j�xj + 1 (sincethe variables have been swapped!) and I wins by (iii).(v) : : : if s = s0: I moves to a. If II moves to b, I wins by L6 above;otherwise, if II moves to f then I wins by (iv).We need two �nal lemmas:L8: If j�yj = k, j�xj � k + 1 and I starts to move from (l1; �x; �y), then II wins:By induction on k, after passing l and m we have: j�yj � k� 1, j�xj � k,so II moves back to l and wins by the induction hypothesis.L9: If j�xj =1, then II wins from (a; �x; �y):If no position is won, i.e. j�xj = 1 for all j�xj then II moves to b andwins by L6. Otherwise, II moves to f choosing some �y such that j�yj ismaximal. There are three cases:(a) I moves to k: then II wins by L8.(b) I moves to g choosing �x s.t. j�xj = 1: then II moves to h. Since22

j�xj =1, II achieves that after h, still j�xj =1, hence wins using L8.(c) I moves to g choosing �x s.t. j�xj = k <1: since �y is maximal, j�xj � j�yj.II moves to i after which j�yj � j�xj (recall that the variables are swapped!).Thus after i, II achieves j�yj � k � 1 and wins by L8.Summarizing, this shows that (for arbitrary �y)� I wins (s0; �x; �y) in 2G i� �x is won in G (use L7-(v)), and� II wins (a; �x; �y) in 2G i� �x is lost or drawn in G (use L9), and� no positions (s; �x; �y) in 2G are drawn (use L7-(i) and L8). 2Putting everything together, we haveWF-Datalog Corollary 15� WF-DatalogG Theorem 16� WF-DatalogG2 �WF-Datalogwhich provesCorollary 17 (WF-Datalog �WF-Datalog2)For every WF-Datalog query, there is an equivalent query in WF-Datalog2.References[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. AddisonWesley, 1995.[AS91] S. Abiteboul and E. Simon. Fundamental Properties of Deterministic andNondeterministic Extensions of Datalog. Theoretical Computer Science,78(1):137{158, 1991.[AV91] S. Abiteboul and V. Vianu. Datalog Extensions for Database Queries andUpdates. Journal of Computer and System Sciences, 43(1):62{124, 1991.[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives inMathematical Logic. Springer, 1995.[FKL97] J. Flum, M. Kubierschky, and B. Lud�ascher. Total and Partial Well-Founded Datalog Coincide. In F. Afrati and P. Kolaitis, editors, Proc. 6thIntl. Conference on Database Theory (ICDT), number 1186 in LNCS, pp.113{124, Delphi, Greece, 1997. Springer.[Gar70] M. Gardner. The Game of Life. Scienti�c American, 223, October 1970.[Gro92] M. Grohe. Fixpunktlogiken in der endlichen Modelltheorie. Master'sthesis, Universit�at Freiburg, 1992.23

[Gro94] M. Grohe. The Structure of Fixed-Point Logics. PhD thesis, Universit�atFreiburg, 1994.[Imm86] N. Immerman. Relational Queries Computable in Polynomial Time.Information and Control, 68:86{104, 1986.[Kub95] M. Kubierschky. Remisfreie Spiele, Fixpunktlogiken und Normalformen.Master's thesis, Universit�at Freiburg, 1995.[VG93] A. Van Gelder. The Alternating Fixpoint of Logic Programs withNegation. Journal of Computer and System Sciences, 47(1):185{221, 1993.

24

