Games and Total Datalog™ Queries

Jorg Flum ?, Max Kubierschky #, Bertram Ludischer P

a Institut fur mathematische Logik, Universitat Freiburg,
Eckerstr. 1, D-7910/4 Freiburg, Germany
flum@uni-freiburg.de

b Institut fir Informatik, Universitit Freiburg,
Am Flughafen 17, D-79110 Freiburg, Germany
ludaesch@informatik.uni-freiburg.de

Abstract

We show that the expressive power of Datalog™ programs under the well-founded
semantics does not decrease when restricted to total programs thereby affirmatively
answering an open question posed by Abiteboul, Hull, and Vianu [AHV95]. In par-
ticular, we show that for every such program there exists an equivalent total program
whose only recursive rule is of the form

win(X) < move(X,Y), ~win(Y)

where mowve is definable by a quantifier-free first-order formula. Also for the noninfla-
tionary semantics we derive a new normal form whose only recursive rule simulates
a version of the game of life.

Key words: Datalog, well-founded semantics, fixpoint logics, games.

1 Introduction

Consider the Datalog program

I : ¢(X,Y) < edge(X,Y)
q(X,Y) < edge(X,Y),q(Y, Z).

* Expanded version of [FKLI7].

Preprint submitted to Elsevier Preprint 7 January 1998

Here, ¢ is an intensional symbol of Ty (precise definitions are given in subse-
quent sections). Given a database instance D = (D, edgeP) with universe D
and binary relation edge®, I1, defines a sequence

qo,d1,92, - - - (1)

with ¢o := () and with ¢, the set of pairs (a,b) € D x D such that ¢(a,b) is
the head of a ground instance of a rule of Ily, whose body is true in D, if ¢,
is taken as the (actual) interpretation of ¢. (One easily verifies that g, is the
set of pairs (a,b) such that in D there is a path from a to b of length < n.)

Since ¢ only occurs positively in TIy, the sequence in (1) is increasing, so it
eventually becomes constant, the constant value ¢; being the truth set of Il
in D. (Clearly, g; is the transitive closure of edgeP.) The query associating
with D the corresponding binary relation ¢ is denoted by (I, g¢).

Consider the Datalog™ (Datalog with negation) program
IT: Q(X,Y) <_T(X7Y7Z)7_'Q(‘/;X)
Q(Xa Y) — _'S(Xa YV) Z)a T(Xa YV) Z)a (](X, Y)a _'Q(}/a Y)

Now, ¢ occurs negatively and, contrary to the case of Datalog programs, there
are various possible semantics leading to different queries. In this paper we
consider the noninflationary semantics (NI-semantics) (cf. [AV91]) and the
well-founded semantics (WF-semantics) [VG93]. In both, IT induces a sequence
o, q1, - - - of subsets of D x D (see below). Set

q¢ :={(a,b) | there is an ny s.t. (a,b) € g, for all n > ng}
(q¢, the truth set, consists of those pairs that eventually are in all members of
the sequence),

qf :={(a,b) | there is an ng s.t. (a,b) & g, for all n > ng}

(qf, the false set, consists of those pairs that eventually are outside all members
of the sequence), and ¢, := (D x D)\ (q: U q¢) the undefined set.

For a fixed semantics, we say that II is total, if ¢, = 0 in all databases; two
programs are equivalent, if they have the same truth set in all databases.

For the NI-semantics and the WF-semantics, we show that

e every Datalog™ program is equivalent to a total one, and
e for every Datalog™ program II there is another program having as truth set
the false set of II.

Moreover, for both semantics we derive normal forms of game-theoretic flavour.

So, in both semantics, from an extensional point of view, we have the same
expressive power, if we restrict to queries (II, ¢¢), where II is a total program
or, looking at the other extreme, if we admit as queries (II, ¢¢), (II, ¢f), and
(I1, q,,) with their obvious meanings.

Let us recall the semantics: In the NI-semantics the stages ¢, are defined
in exactly the same way as for Datalog programs (but now, in general, the
sequence ¢, is not increasing, since ¢ may occur negatively).

We come to the WF-semantics. Consider the Datalog™ program II above.
Replace all negative occurrences of ¢ by a new variable ¢’ (keeping the negation
symbol), thus obtaining the program

I q(X,Y) « r(X,Y, Z), ¢ (V,X)
q(X,Y) « —s(X,Y, 2),r(X,Y, Z),q¢(X,Y),=¢'(V,Y).

In IT" the symbol ¢ is extensional, hence, IT' is a Datalog program. Now, in
a database instance D = (D,rP,s?), the stages g, of the evaluation of the
original program IT are defined by induction: gy := () and ¢, is the truth set
of ¢ of the Datalog program IT' in (D, ¢,) (i.e., taking ¢, as interpretation of
q'). Hence, the evaluation of T in the WF-semantics corresponds to a nested
fixpoint.

While for the NI-semantics the results mentioned above (besides the game-
theoretic normal form) are consequences of known facts and are more or less
explicit in the literature (see [AS91], [Gro92|, [EF95]), the corresponding re-
sults for the WF-semantics are new; in particular, they solve an open problem
stated in [AHV95]. The parts on the NI-semantics (Section 3) and the WF-
semantics (Section 4) may be read independently.

For the WF-semantics we use a normal form for least fixpoint logic LFP due
to Immerman [Imm86] to show that every program is equivalent to one whose
only recursive rule is of the well-known form

win(X) < move(X,Y), ~win(Y). (@)

For a database instance (D, moveP), the elements (more precisely, the tuples of
length equal to length(X)) are viewed as the positions in a game between two
players I and IT that move alternately. Read move(X,Y) as “from position
X a player can move to position Y ”. A player loses in X if she cannot move;
she wins in X if she can move to a position which the opponent loses. Then
in the WF-semantics, winy is the set of positions X such that I has a winning
strategy for the game starting at X, while winy are the positions for which IT
has a winning strategy. win,, are the drawn positions for which neither player

has a winning strategy.

Consider, for example, a game where D = {a,b,c,d} and move” = {(a,b),
(b,a), (b,c), (¢,d)}. Then winy = {c}, winy = {d}, and win, = {a,b}. In
fact, a and b are drawn: a player in b can move to a (moving to ¢ would leave
the opponent in a won position), thus avoiding to lose by enforcing a game
of infinite length. Now our main result concerning the WF-semantics can be
rephrased as

FEvery game is equivalent to a draw-free game.

The achieved normal form retroactively justifies the ubiquity of the win-move
example in the literature.

Note that the NI-semantics and WF-semantics coincide for Datalog™ programs
having the normal form (G) above. Thus, in terms of expressive power, the
nested fixpoint process is superfluous. However in general, the semantics dis-
agree as can be seen from the program

q(X) + q(X)
q(X) ¢ =q(X).

2 Preliminaries

A database schema (or signature) o consists of finitely many relation symbols

r1,...,r, with associated arities arity(r;) > 0 and of finitely many constants
c1,...,Cs. Let dom be a fixed and countable underlying domain. A database
instance (database) over o is a finite structure D = (D, rP, ... 7P, cP, ... cP)

with finite universe D C dom, relations r? C D¥*®¥(") and elements ¢ € D.

Let inst(c) denote the set of all database instances over o. A k-ary query q
over o is a computable function on inst(c) such that (i) ¢(D) is a k-ary relation
on D, and (ii) ¢ is preserved under isomorphisms, i.e., for every isomorphism
7 of D, q(m(D)) = 7(¢(D)). Thus, a query defines a k-ary global relation on
inst(o).

A query language L is a set of expressions together with a semantics which
maps every expression ¢ € L to a query (over some o). The expressive power
of a query language L is the class of all queries definable in L. ¢ € L; is
equivalent to v € Lo if they express the same query. We say that £, is at most
as expressive as Lo, denoted by L < L, if for every expression in £ there
is an equivalent expression in L£,. Both languages have the same expressive
power, written as L1 = Lo, if L1 < Ly and Lo < L;.

Notation. Following logic programming notation, we write domain variables
in upper case like X, X', Y etc. Relation symbols like 71, . .., 4, win, move are
denoted in lower case.

T denotes a vector of n terms T1,...,T, (variables or constants). For a term
T we denote by T the sequence T,...,T; its length will be clear from the
context. If r is a relation symbol of arity n and T},...,7T,, are terms then
r(Ty,...,T,) is an atom.

Datalog(™ Programs. A Datalog” program II is a finite set of rules of the
form

H<« B,,...,B,

where the head H is an atom and all B; in the body are literals (i.e., atoms,
negated atoms, equalities, or negated equalities). Relational symbols occurring
in some head of IT are called intensional and form the signature idb(IT), all
other relations are extensional. The extensional symbols together with the con-
stants form the signature edb(IT). For notational simplicity, we often assume
that I only contains one intensional relation symbol, usually gq.

In a Datalog program, only relations from edb(IT) may occur negated in bodies
of rules. !

Let D be a database over edb(IT). A ground instance of a rule is obtained by
substituting elements from D for all variables. ground(Il, D) denotes the set
of all such ground instances of rules of II.

Fixpoint Semantics for Datalog. Fix a Datalog program II with a unique
intensional symbol ¢ of arity m and a database D over edb(IT). The operator
I' (= I['(I1, D)) maps every subset I of D™ to a subset of D™:

L' In [AHV95] such programs are called semipositive, while (positive) Datalog pro-
grams contain no negation at all.

I'(I):={a|q(a) < Bu,...,B, € ground(Il, D) and By,..., B, are true in (D, I)}.

Here, (D, I) is the database instance over the signature edb(I) U {q} that
extends D by interpreting ¢ as the set I.

Then T" induces a sequence ¢, q1, ... of subsets of D™ given by
q:=0, and ¢, :=T(q.).
Clearly,
o< hn @

In Datalog, the truth set ¢; is given by

gt = an

n>0

We associate to IT the query which maps the database instance D to ¢;. We
denote this query by (I1, g;).

3 NI-Semantics for Datalog™ Programs >

When applied to Datalog™ programs, the above I'-operator also induces a
sequence ¢y, q1, . . . of subsets of D™. However, since negated intensional atoms
may occur in the bodies, in general the sequence is not increasing. For the NI-
semantics, we define the truth set g, the false set qf, and the undefined set

qu by

g :={a | there is an ng s.t. @ € g, for all n > ng},
qf :={a | there is an ng s.t. @ ¢ g, for all n > ny},

Qu:=D"\ (¢ Uqy).

Now, in NI-Datalog the program II gives rise to three queries, (I, ¢;), (IT, ¢¢),
and (II, ¢,) with their obvious meanings. IT is called total, if for all database
instances we have that ¢, = 0 or, equivalently, for some n,

thQn:qn+1:---ZQfa

2 As already remarked in the introduction, the reader only interested in the well-
founded semantics may skip this section.

where ¢} denotes the complement of gy with respect to D™.

NI-Datalog, is the restriction of NI-Datalog to total programs and to the
corresponding queries (IT, q¢).

The following theorem is a straightforward generalization of a result of [AS91]
(cf. also [Gro92])).

Theorem 1 (NI-Datalog < NI-Datalog,) For every NI-Datalog program
IT there is an equivalent total program. Moreover, there is an equivalent total
program having as truth set the false set of TI.

Proof (Sketch) Let II be a Datalog™ program and (for simplicity) ¢ its
unique intensional symbol, say of arity m. Given a database instance D denote,
as above, by ¢, the n-th stage of the iteration process. Since the universe
D of D is finite, the sequence qq, ¢1,... must become periodic, so there are
ng > 0 and [y > 1 such that ¢, = gn4, holds for all n > ny. Choose £ s.t.
[:=Fk-ly > ng. Then ¢ = qryr1y = G21-

Clearly, if ¢2,, = ¢, then

® (o, q1, ... eventually gets constant iff ¢, = ¢, 11.
® Gt =0qu N N qan—1 = k>0 Intk-
® qr =qn N NG5y = MNk>0 Ggi-

(Here, for I C D™, we denote by I° the complement of I with respect to D™.)
These facts can be used to obtain a total program with the same truth set as
IT and a total program whose truth set is the false set of II. O

Now, we show that for every NI-Datalog program there is an equivalent total
one in the form of a game resembling the game of life [Gar70] (recall that two
programs are equivalent if they have the same truth set for all databases).

Theorem 2 (NI-Datalog < NI-Datalog$’) For every NI-Datalog program
there is an equivalent total one whose only recursive® rule has the form

alive(X) «+ r(X, V), s(X, W), alive(V'), =alive(W).
Intuitively, the rule says that cell X is alive in the next generation (= stage) if

there is an r-neighbour V" and an s-neighbour W of X such that in the actual
generation V' is alive and W is dead.

3 A rule r is recursive if some literal in the body of r depends—directly or indirectly
via other rules—on the atom in the head of r, cf. [AHV95].

To obtain this result we improve a known normal form for partial fizpoint logic
PFP.

Partial Fixpoint Logic. PFP-formulas are obtained by repeated appli-
cations of first-order operations {—, A,V, V¥, 3} and the fixpoint operator FP
starting from atoms and equations; that is, we add to the first-order formation
rules the rule

A

[FP,x) ¢|T (FP)

where length(X) = length(T) = arity(q). The semantics D £ 1 is given

as usual (cf. [EF95]). In particular, for ¢(V,7) = [FPy5) ©(q, X, Z)]Y and
a,be D:

DEy(ab) iff acaq,
where the truth set ¢ is defined by
¢ := {d € D | there is some ng s.t. d € ¢, for all n > ng}
and where ¢y := () and ¢, := {d € D | D }= ©(qn,d,b)}.
Every PFP-formula (Y) defines a query ¢, as follows:

@ : D= {d|DE¢d)}
It is well-known that NI-Datalog = PFP (e.g., see [EF95]).

Every PFP-formula is equivalent to a formula which only contains one fixpoint
operator FP. Moreover, by increasing the arity of the second-order variable,
Grohe [Gro94] has shown that the fixpoint operator can be rewritten in such a
way that an element of a new stage is witnessed by two elements, one belong-
ing to the preceding stage, the other one belonging to its complement. More
precisely, for every PFP-formula (Y") there is an equivalent formula of the
form

UIFP 5y (1ho(X) vV IVIW (¢(V) A =q(W) Ay (X, V, WIDYU (%)

where g, 1 are quantifier-free and do not contain ¢ and where U= u,...,.U

for a variable U (thus, arity(q) = length(X) = length(Y') + length(U)).
Moreover, one can assume that the formula (x) is total (for all databases
D the false set gy is the complement of the truth set ¢;) and nontrivial (for
all D, we have () # g, # D9 for all n > 1)*.

4 Although the answer to the original query gy may be 0 or Darity(ay)

We improve this normal form by replacing the ternary relation between X, V,
and W by two binary relations:

Proposition 3)
Every PFP-formula (Y is equivalent to a total one of the form

FP) (Yo(X)
VAVIW (q(V) A =q(W) Ay (X, V) A (X, IW)YVTYT - (+)

where Yy, Py, and Yy are quantifier-free and do not contain q.

We postpone the proof of this proposition and first show Theorem 2:

Proof of Theorem 2. Let II be a NI-Datalog program. Consider an equiva-
lent PFP-formula which we may assume to be given in the form (+). But the
formula (+4) is equivalent to a NI-Datalog program IT" of the desired form:

I : (X)) + o(X)
r(X,V) « (X, V)
s(X, W) « (X, W)
¢(X) < (X, V), s(X, W), q(V), ~g(W)
answer(Y) < q(V,U,Y,U)

More precisely, if ¥o(X) has an equivalent disjunctive normal form \/*_, (¢; 1 (X)A

-+« A @im,; (X)), one has to replace the rule “g(X) < ¢)o(X)” above by k rules

¢(X) 301,1()_(),---,901,7711()_()

0(X) ora(X), -y Qm, (X)

and similarly for the rules defining r and s. O

Proof of Proposition 8. Assume that the PFP-formula ¢/(Y") has the Grohe
normal form

FUIFP) (Yo(X) VIVIW (q(V) A =g(W) At (X, V, W))IYU

.‘_/
and that ¢ is total and nontrivial. Let arity(q) = m. Then ¢(Y) is equivalent

to a formula of the form

FUFP, 5, ((o(X1) A X1=X5)
VAVIW (r(V) A =r(W) A 1 (X, V) A xo(X, W) YUYU

where arity(r) = 2m, X = XX, V =WV, W = W1 Wy, and length(X;) =

length(V;) = length(W;) = m for i = 1, 2.

The equivalence holds if xy; and x, are arranged in such a way that the fol-
lowing holds for all databases and all n > 1:

(@ @) | @ € g} U (gn1 % q5_y)
(@,a) | @ € ¢u} U (gn x ¢5),

Top—1 =

{
{

Ton

(then, ry = {(@,a) | @ € ¢t} U (g X qf)).

This is achieved by setting

x1i= (X1 = Xy = (1 (X1, V1, V2) A VL # 13))
A (X # X = (X =V =13))
o= (X #Xo = (Xo =W, =Ws)). O

Remark. By passing in the proof to a relation r of higher arity (and a longer
sequence U), one can obtain a normal form 3UJ...]YU, where the formula
inside the brackets has the same form as in (+) of Proposition 3.

4 WPF-Semantics for Datalog™ Programs

As mentioned in the introduction, the evaluation of Datalog™ programs under
the WF-semantics corresponds to a nested fixpoint, also called alternating
fizpoint [VGI3]. It is computed as follows:

Given a Datalog™ program II, replace every negative occurrence of ¢ € idb(IT)
by the new relation symbol ¢' (keeping the negation symbol). Since ¢' does not
occur in the head of any rule, it is extensional, so the resulting program IT is a
Datalog program. The stages ¢, of II for a given database D are defined using
the program II': gy := (), and ¢, is the result of evaluating II' in (D, ¢,),
i.e., where ¢’ is interpreted by ¢,. As above, the set ¢, ¢f, and ¢, are defined,
giving rise to the WF-Datalog queries (I1, ¢;), (I, ¢¢), and (I1, g,), respectively.

10

One easily verifies that

WP Cu< - CgC@pCaq,

SO

qt = U Qo , and gy = (ﬂ Qont1)"
n>0 n>0

This was used by van Gelder [VG93] to show®

Theorem 4 (WF-Datalog < LFP)
For every WF-Datalog query there is an equivalent LFP-formula.

LFP-formulas (for least fizpoint) are defined like PFP-formulas except that a
proviso is added to the rule (FP) above, namely, the variable ¢ may only occur
positively in the formula ¢. This implies that all LFP-formulas are total (the
truth set always being the least fixpoint of the corresponding operation).

Let WZF-Datalog, be the restriction of WF-Datalog to total programs and
queries of the form (IT, ¢;) (recall that IT is total, if ¢, = 0 for all databases D
and all ¢ € idb(IT)). In [AHV95], Abiteboul et. al. raised the question whether
one can find for each WF-Datalog program an equivalent total one. In other
words, is WF-Datalog < WF-Datalogy? (WF-Datalog, < WF-Datalog holds
trivially.) When restricted to ordered databases, this is known to be the case,
since stratified Datalog is equivalent to LFP on ordered databases, and ¢, = ()

for stratified Datalog programs evaluated under the WF-semantics (see, e.g.,
[AHV95]).

As we will show in the sequel, the question can also be answered affirmatively
in the absence of order. First, using the above result of van Gelder and a normal
form for LFP due to Immerman, we show that every WF-Datalog program
can be transformed into a normal form which corresponds to a certain game.
Finally, we establish our main tool, the reduction of games to draw-free games.

4.1 Win-Move Games

Definition 5 (Win-Move Games) A win-move game (or game for short)
is a triple G = (V, M,vy) where V is a finite set of positions (or vertices),
M CV xV is a set of possible moves, and vy € V is the distinguished start
position of G.

5 In [VG93] it was also shown that for every LFP-formula 1 there is an equivalent
WEF-Datalog query (Ily, g¢), i.e., LFP < WF-Datalog.

11

The game G s played with a pebble by two players I and II in rounds. FEach
round consists of two moves. Initially, I starts the game from the start position
vo. A player can move from x to y iff (x,y) € M. A player loses in x, if she
cannot move; she wins in x, if she can move to a position in which the opponent
loses.

A position x € V' is won for a player if the player can win every game starting
at x, no matter how the opponent moves. Conversely, x € V is lost for a player
if the opponent can always win the game starting at x, no matter how the player
moves. A position x is drawn if x is neither lost nor won. G = (V, M, vy) is
won/lost/drawn if vy is won/lost/drawn for I.

If = is won, the length of x, denoted |x|, is the number of rounds which are
necessary for I to win, provided both players play optimal (i.e., each player
tries to win as quickly or to lose as slowly as possible). If x is lost or drawn,
we let |z| = co.

A game is called draw-free if no position in V is drawn. Note that a game
may be determinate, i.e., the start position vy is either lost or won, yet it may
contain positions x which are drawn.

Observe that the presence of cycles in M is necessary but not sufficient for the
existence of drawn positions in G. For example, if M = {(a,b), (b,a), (b,c)}
then b is won, whereas a and ¢ are lost. If the move (¢, d) is added to M then
d is lost, ¢ is won, and a and b are drawn.

Games have a very elegant and intuitive representation in WF-Datalog in the
form of the famous win-move example. Indeed this example has always been
used to demonstrate that WF-Datalog handles negation in a nice and intuitive
way (but note that the WF-semantics and the NI-semantics coincide for this
class of programs).

Definition 6 (WF-Datalog®) Let WF-Datalog® be the class of WF-Datalog
queries obtained from programs I1 which have a single recursive rule of the form

win(X) < move(X,Y), ~win(Y)

where X and Y have the same arity > 1, and a rule of the form

answer (V) < win(T)

where V' are variables occurring in T. All other rules of 11 are nonrecursive,
contain neither win nor answer, and are semipositive (i.e., negation is allowed
only in front of edb relations).

Let WF-Datalog$ be the restriction of WF-Datalog® to total programs and
queries (I1, qz).

12

Remark. Consider the following WF-Datalog® program

Hgame : win(X) < move(X,Y), ~win(Y)
answer < win(vy).
Since every game G = (V, M, vp) is a finite structure, it can be used as input

to Ilgame. One easily verifies that Ilgame represents such games in the sense
that

gt won
vo € 9 qf & Gis lost

Gu drawn

4.2 Diagrams

As an auxiliary notation for games, we make use of diagrams as those depicted
in Fig. 1. We assume that with every variable X we have associated a variable
X' in a one-to-one fashion.

Definition 7 (Diagrams) A diagram d consists of a finite set of squares
and a finite set of (possibly labeled) arrows between squares. Every diagram
contains exactly one distinguished start square sy. In case an arrow is labeled,
the label has one of the forms

({(p ??, (IHX/ ¢ ?), OT ({HX/ » ,
where

(1) ¢ and 1 are quantifier-free, and
(2) ¢ only contains unprimed variables.

If “3X'7 or “3IX"4” (for some) occurs in d, then X are bound variables
of d. All other unprimed variables of d are called parameters of d.

Example 8 In Fig. 1, the diagram dy contains the bound variable Y and the
parameter X, while dy has no parameters.

Playing Games with Diagrams. Given a fixed database D, every diagram
d with parameters among U induces a game G4 (u are the fixed domain values
used for the variables U). Gy 5 is played as follows:

13

! ! __
ﬁEIX X'=Y

¢} f @

Fig. 1. Two diagrams

Let Sq¢ = {so,...,Sm} be the squares and X = X, ..., X,, the bound variables
of d. The game is played with n domain pebbles (lying on the current domain
values z € D" assigned to X) and an additional square pebble (lying on the
current square s; € Sq).

Initially, the square pebble is on the start square sy of d and the domain
pebbles X are on a fixed element ¢P.% The players move alternately with
player I starting the game. In each move, a player may move the pebbles
according to the rules induced by the diagram: the square pebble has to be
moved along an arrow of d. Additionally, the domain pebbles have to be moved
in accordance with the constraints given by the labels:

More precisely, the positions of G4 4 are

V={(s,z)|s€ Sq,z € D"} .

The start position of G4 is (so, ¢) where sg is the start square of d. The moves
between positions are given by the arrows in d: there is a move from (s, Z) to

(SI, ZEJ) in gd’ﬂ if

(1) there is an (unlabeled) arrow s—s' in d and 7’ = Z,

(2) there is an arrow s — s’ with quantifier-free ¢ such that D = ¢(Z) and
¥ =1z, or

(3) there is an arrow s — s’ where © contains quantifiers and

6 To simplify the presentation, we assume that there is at least one constant c

whose interpretation in D is ¢P.

14

(a) for all X; such that X; is not 3-quantified in ©, we have r; = z;, and
(b) if © contains a quantifier-free formula (X, X'), then D = (7, 7').

Theorem 9 For every diagram d with bound variables X there is a WF-Datalog®
program Il with move relation move(S, X, S', X') such that for I,

0 won
(s,a) € 4 ¢y & (s,a) is lost ¢in Gag -

Gu drawn

Proof The translation is straightforward and should be clear from Fig. 2
which shows how dy from Fig. 1 is encoded.” O

move(sp, X,Y, a, X' YY)+ X' =X, Y' =Y
move(a, X,Y, b, X" Y') + X' =

move(b, X,Y, ¢, X' V)« X'=X,Y' =Y
move(b, X,Y, e, X' Y)« X'=X,Y' =Y
move(c, X, Y, d, X" Y') « edge(V,X), X' =X, V' =Y
move(e, X,Y, £, X' Y)+ X'=X,Y' =Y

move(f, X,Y, g, X', Y+ X' =Y, Y' =Y

(g

XY, 50, X\ Y« X' =X,Y'=Y

Y’)
)
)
)
)
)

move
win(S, X,Y) + move(S, X,Y, §" X" Y'), —win(S", X", Y’)
answer (V) < win(so, V,Y).

Fig. 2. Encoding of diagram dy in WF-Datalog®

In the following, we show how one can find for every WF-Datalog query an
equivalent query from WF-Datalog®, i.e., in the form of a game. As a first
step, we show how to encode first-order formulas as games:

Theorem 10)
For every first-order formula ¢(U) there is a diagram dy such that

(1) I wins Gg,a < D = (a).

" Note that the constants s, a, b, ... denoting squares of a diagram do not belong
to the database schema in question. Here and in the following, one can avoid such
new constants cy, ..., ¢, using new variables 71, ..., Z, and letting all tuples z € D"
with z; # 21 = ... 2,1 = z;41 = -+ - = 2 take over the role of ¢;.

15

(2) G, is draw-free.

Proof We define d, by induction on the structure of 1. Note that sy denotes
the start square of the corresponding diagram. In the inductive definition of
diagrams, arrows pointing to a subdiagram are connected to the start square
of this subdiagram.

e if 1) is atomic then d := D

Clearly, I wins Gg, 4 iff D |= 1 (u).

e if 1) = = then dy := d(p

Note that I wins (loses) Gg, 4 iff IT loses (wins) Gg, 4. Here, we use that
Ga,,a is draw-free by induction hypothesis.

dy

e if 1) = p A x then dy := D<

dy

I wins Gg, 5 iff she can win both the game for ¢ and the game for x (if
one of them is lost for I, then II could choose the corresponding arrow and
win).

ax’

e if p =3X ¢ then dy := D\)d@

In this case, I wins QdW—L iff there is a value a € D such that I wins G4, 7q-

The game is draw-free since the move graph of G, 5 is acyclic. a

Note that the squares of the d, can be 2-colored such that player I may only
move along arrows from white to black squares, while IT may only use arrows
from black to white squares (cf. Fig. 1). Moreover, by the above construction,
it is clear that if an atomic formula ¢ occurs only positively (negatively) in 1,
then arrows marked with “p” can only be used by player I (II).

We want to extend part (1) of Theorem 10 to LEP-formulas. For this purpose,
we need the following theorem which is due to Immerman [Imm86]:

Theorem 11 FEvery LFP-formula is equivalent to a formula of the form
[LEP,) ¢le

where is first-order.

16

We will use Theorem 11 to prove

Theorem 12 For every LEP-formula)(U) there is a diagram d,, such that

T wins Gy, < D Y(U).

Proof Let 1) € LFP. By Theorem 11 we may assume that
(U) = [LFPyx) o(U, X)]e

where ¢ is first-order and positive in ¢. By Theorem 10 there is a diagram d,
such that I wins Gg,az < D | ¢(u,7). We modify d, as follows to obtain
the diagram d:

Let A be an arrow of d, which is marked with “g(T)” (g being the relation
symbol bounded by the LFP-operator). Since 1) € LFP, ¢ occurs only posi-
tively in ¢ and by the construction of d,, A can only be used by player I (i.e.,
points from a white to a black square). In other words, I has the obligation

to proof that ¢(7) holds. This is achieved in the new diagram d, as follows:

e The label of A is replaced by “3IX’ X' =T”, and
e there is a new unlabeled arrow from the black square in which A ends to
the start of d,.

This construction is illustrated by Example 13 below and d; in Fig. 1.

Let ¢ be the k-th iteration of ¢ in 1. By induction on k one easily verifies
that:

e If @ € ¢; then player I has a winning strategy for Gy, s where she uses the
start square at most £ times. In the induction step, I uses a winning strategy
for the game Gy, 5 in (D, gx—1), i.e., taking q;_; as the interpretation of ¢ in
©.

Conversely, if a ¢ ¢; then player II can prevent I from winning Gy s DY
repeatedly using a winning strategy for Gg,; in (D, q¢).

Finally, let @ = ¢ and the claim follows. O

Note that in general, the game d, constructed for a LFP-formula) contains
drawn positions, i.e., if D P& ¢(u) then I can prevent I from winning but
may not be able to win de,a either.

17

Example 13 (Good Nodes [AHV95]) Consider the LFP-formula

B(U) = [LEP i) VY (edge(Y, X) = good(¥)]U

»(X)

It computes the “good nodes” of a directed graph, i.e., those that cannot be
reached from a cycle. The diagram dy in Fig. 1 corresponds to the subformula
©(X) of 1 (according to the proof of Theorem 10) and dy in Fig. 1 corresponds
to 1 (according to the proof of Theorem 12).

By applying Theorem 12 and Theorem 9 we directly obtain

Corollary 14
Every LFP-formula is equivalent to a WF-Datalog® query of the form (I1, qz).

Using Theorem 4 this implies

Corollary 15 (WF-Datalog < WF-Datalog®) Every WF-Datalog query (of
any of the forms (I1,q:), (I1,qz), or (I1,qu)) is equivalent to a WF-Datalog®
query of the form (I1,q;). In particular, WF-Datalog < WF-Datalog® .

Remark. In [FKL97] an alternative proof was given using a normal form for
LEFP which is due to Grohe [Gro94] and which allows a very simple translation
into a game. In contrast, the proof presented above uses the normal form of
Immerman [Imm86] which is more known and easier to obtain.

4.3 Reduction from Games to Draw-Free Games

In this section, we show that WF-Datalog® < WF-Datalog?, i.e., for every
WF-Datalog query, there is an equivalent query in WF-Datalog$. By Corollary
15 every WF-Datalog program corresponds to a game. It remains to show
that for each such game, an equivalent draw-free game can be constructed
and represented by a WF-Datalog®” program.

Theorem 16 (WF-Datalog® < WF-DatalogY)
For every WE-Datalog® query there is an equivalent query in WF-Datalogs .

Proof First, we present an informal proof emphasizing the idea of the con-
struction.® Technical details are given afterwards.

8 The reduction presented is due to [Kub95] which also contains the details of a
proof of a normal form for LFP implying Theorem 16.

18

The main problem consists in detecting and avoiding drawn positions. In the
absence of an order on the domain it seems particularly difficult to limit the
length of the game in order to eliminate drawn positions, e.g. we cannot use
a counter for that purpose.

The basic idea is to limit the length of a game by comparing it to a game
of maximal length. Two games are compared by playing them independently
but synchronously. Thus, we construct a new game 2G which simulates these
two games on the original structure G. To do so, we need two pebbles—one
for each game in G. Call these the clock pebble Y (on position in G) and
the werify pebble X (on position z in G).? The game played with the clock
pebble is used to limit the length of the game played with the verify pebble.
The latter plays the role of the pebble in the original game G.

Initially, player I claims that the verify pebble is on a won position, i.e.,
|Z| < 0o (cf. Definition 5). I places the clock pebble on 7 and claims that |7
is the maximal length of a won position in the game. If this is true, I and IT
can compare |Z| and |g| and thus verify the original claim of I. The difficulty
remains that both players have to agree upon the choice of y. To solve this,
one has to design 2G in such a way, that II can be disproved if she “cheats”
by choosing a 4 which is not maximal.

The new game 2G is constructed as follows (cf. Fig. 4): We use two macros
1round(X) and 1round(Y) to denote a round of moves of the pebbles on z and
y in G, respectively (Fig. 3). Note that in the simulated game G, I moves first
in 1round(X) while IT moves first in 1round(Y).

¥ ¥

3X’ move(X, X')

H
ﬂ
()

zZ

1 round() = X’ TTLO’UC(, 1 round(Y) = 3y’ mm}e(l_/, Y/)
Z1...2a 25 Z1...24

>
>
>

Fig. 3. Macro definitions

Like above, the diagram in Fig. 4 defines a set of semipositive nonrecursive
rules for the new relation move(S, X, Y, S, X', Y'). Thus, if the move relation
of the original game G (used in the macros of Fig. 3) is n-ary, the new move

9 Thus, we abstract from the fa{:t that X is a tuple of pebbles, and simply call X
a pebble in 2G; analogously for Y.

19

_—————

% —]
3}7! dl N d4

¢]

L

X’

]

g o == _ -
=] IX’'WYW XY =YX

..ig

J

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: h1...h4{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Player I

Player II

Sop — a

b—c

f—k

f—g

|1—)|2

|Z| < oo, “the length of Z
is finite, i.e., T is won”

3z : |z| = 1, “I show you
a new z which is won in
1 round”

|z| < |g|, “y is not shorter
than z”

171 < 00,33 : 3] = |71+1,
“y is finite, but not of
maximal length: T show
you a new z which is 1
round longer”

|z| < ly|, “y is not shorter
than 2”7

|z| < ly|, “I can win in
time”

a—b

a—f

k—)|1

g — hy

g—i1

3% : |Z| < oo, “there is no
in G which is won”

37 ¢ |g] < o0,|y| maximal,
|z| > |y, “y is finite, of max-
imal length and shorter than
i”

|z| > |y|, “you can’t win on T
in time”

|z| > |y| + 1, “Z is more than
1 round longer than §: I give
you a lead of 1 round z and
you lose”

|z| < |yl|, “your chosen Z is not
longer than my §: let us swap
the pebbles on z and y and
give me a lead of 1 round in
y': then you lose on Z against
the clock”

Fig. 4. Draw-free game 2G and implicit claims of I and II.

20

relation of 2§ is 2(n+1)-ary. For a given answer relation answer(V) < win(X)
in Ilg, the new answer relation of Ilyg is defined as

answer(V) < win(sg, X,Y).

It is easy to see that I wins in 1round(X) if |z] = 1, and II wins 1round(Y) if
lyl = 1.

Assume for the moment that the dashed edge from m, to sy in Fig. 4 is absent.
The loop I; — my — |; compares the lengths of Z and §: T wins this comparison
if |Z] < oo and |Z| < |g|, while II wins if |7| < oo and |7| < |Z|.

To get a better understanding of the construction of 2G, we explain the dia-
gram in Fig. 4 as a dialog between I and II, where each move corresponds to
a claim of the moving player. Observe that each claim of a player contradicts
the previous claim of the opponent, and that each false claim can indeed be
disproved using the corresponding moves in the diagram.

Using the diagram and the implicit claims of the players, it should be clear
that I wins (so,Z, %) in 2G (for arbitrary ¢) if I wins Z in G, and I wins
(so, Z,7) in 2G if T is lost or drawn (for I) in G. Thus the new game 2§ is
determinate for positions (s, Z, 7).

However 2G may still contain positions which are drawn: Consider, for exam-
ple, (I, Z,7) where Z and 7 are drawn in G. Then II gets no chance of refuting
the claim that z is won in G, hence (ly, Z, §) is also drawn in 2G. In order to
allow II to defeat such false claims, the dashed edge is needed. By moving
along my — sy, II can win and refute I by choosing the maximal y in the
move a — f.

The final obstacle is that one has to verify that if Z is won in G, then IT cannot
delay the game infinitely using the edge my — so. Indeed |Z| decreases each
time the game reaches my: If II chooses in a some y with |gy| > |Z|, then I
has to move along f — k thereby enforcing that at least 1round(X) is played.
Otherwise, if II chooses |j| < |Z|, then I chooses a new Z with |Z| = || + 1.
Independent of the choice of I (g — h; or g — iy), the new T will be at least
one smaller, when my is reached.

We turn to the formal proof. In the sequel, if we say that “player I (II)
achieves ... ", we mean that there is a strategy such that either player I (II)

13 ”

wins, or situation “...” occurs.

The following lemmas are immediate:

21

L1:

L2:

L3:

1L4:

L5:
L6:

Let |z| < k and I starts to move (from the first square) in a subdia-
gram 1round(X). Then I achieves that |z| < k — 1 on the exit square (of
Lround(X)). In particular, I wins if k£ = 1.

Let |Z| > k > 1 and I starts in a subdiagram 1 round(X). Then IT achieves
that |z| > k — 1 on the exit square. If |Z| = 0o, II achieves that |Z| = oo
on the exit square.

Let |y| < k and I starts in a subdiagram 1round(Y). Then II achieves
that || < k — 1 on the exit square. In particular, I wins if & = 1.

Let |§| > k > 1 and I starts in a subdiagram 1round(Y). Then I achieves
that || > k — 1 on the exit square. If |§j| = oo, I achieves that |j| = oo
on the exit square.

(dy,Z,7) is won < |z]| = 1.

(b, Z,) is won < A% |Z| < co. (Note that 37 || < 00 & T |Z]| =1.)

The following lemma is shown by induction on k:

L7:

Let |Z| < k. We simultaneously show that (s, z,) is won . ..

(i) ... if s = I and |g| > k: I achieves that if my is reached, then
|z| <k —1and |g| > k — 1. If T moves back to |y, then I wins by
the induction hypothesis; if II moves to sq, then I wins using (v) for
k—1.

(ii) ... if s = hy; and |g| > k — 1: T achieves that if h, is reached, then
|z| <k — 1 and wins by (i) for k& — 1.

(iii) ... if s=1i; and |g| > k: I achieves that if iy is reached, then |g| > k
and wins using (i).

(iv) ... if s =f:If |y| > k then I moves to k and wins by (i). Otherwise, if
|y| < k then I moves to g and chooses some = such that |z| = |y|+ 1.
This is possible since by assumption |Z| = k > |g|, hence g is not
maximal. Now if II moves to h; then I wins by (ii) for some smaller
k. If T moves to i; instead, then after the move |g| = |Z| + 1 (since
the variables have been swapped!) and I wins by (iii).

(v) ... if s = so: I moves to a. If IT moves to b, I wins by L6 above;
otherwise, if II moves to f then I wins by (iv).

We need two final lemmas:

L8:

L9:

If |y| =k, |Z| > k + 1 and I starts to move from (Iy, Z,y), then II wins:

By induction on k, after passing | and m we have: |y| < k —1, |z| > k,
so IT moves back to | and wins by the induction hypothesis.

If |Z| = oo, then I wins from (a, Z, §):

If no position is won, i.e. |Z| = oo for all |Z| then II moves to b and
wins by L6. Otherwise, IT moves to f choosing some § such that |g| is
maximal. There are three cases:

(a) I moves to k: then II wins by LS.
(b) I moves to g choosing Z s.t. |Z| = oo: then II moves to h. Since

22

|z| = oo, II achieves that after h, still |Z| = oo, hence wins using LS.

(c) I moves to g choosing 7 s.t. |Z| = k < oo: since ¢ is maximal, |7| < |g].
IT moves to i after which |g| < |Z| (recall that the variables are swapped!).
Thus after i, IT achieves || < k — 1 and wins by LS.

Summarizing, this shows that (for arbitrary 7)

e I wins (sg, 7, %) in 2G iff T is won in G (use L7-(v)), and
e IT wins (a,Z,y) in 2§ iff 7 is lost or drawn in G (use L9), and
e 10 positions (s, 7, y) in 2G are drawn (use L7-(i) and L8). O

Putting everything together, we have

Corollary 15 Theorem 16

WF-Datalog < WF-Datalog® < WF-Datalogt’ < WF-Datalog

which proves

Corollary 17 (WF-Datalog = WF-Datalogs)
For every WF-Datalog query, there is an equivalent query in WF-Datalogs.

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison
Wesley, 1995.

[AS91] S. Abiteboul and E. Simon. Fundamental Properties of Deterministic and
Nondeterministic Extensions of Datalog. Theoretical Computer Science,
78(1):137-158, 1991.

[AV91] S. Abiteboul and V. Vianu. Datalog Extensions for Database Queries and
Updates. Journal of Computer and System Sciences, 43(1):62-124, 1991.

[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in
Mathematical Logic. Springer, 1995.

[FKLI97] J. Flum, M. Kubierschky, and B. Ludéscher. Total and Partial Well-
Founded Datalog Coincide. In F. Afrati and P. Kolaitis, editors, Proc. 6th
Intl. Conference on Database Theory (ICDT), number 1186 in LNCS, pp.
113-124, Delphi, Greece, 1997. Springer.

[Gar70] M. Gardner. The Game of Life. Scientific American, 223, October 1970.

[Gro92] M. Grohe. Fixpunktlogiken in der endlichen Modelltheorie. Master’s
thesis, Universitat Freiburg, 1992.

23

[Gro94] M. Grohe. The Structure of Fized-Point Logics. PhD thesis, Universitét
Freiburg, 1994.

[Imm86] N. Immerman. Relational Queries Computable in Polynomial Time.
Information and Control, 68:86-104, 1986.

[Kub95] M. Kubierschky. Remisfreie Spiele, Fixpunktlogiken und Normalformen.
Master’s thesis, Universitat Freiburg, 1995.

[VG93] A. Van Gelder. The Alternating Fixpoint of Logic Programs with
Negation. Journal of Computer and System Sciences, 47(1):185-221, 1993.

24

