
Yet Another Hierarchy TheoremMax KubierschkyAbteilung f�ur mathematische Logik, Albert-Ludwigs-Universit�atEckerstr 1, 79104 Freiburg, Germanyemail: max@sun1.mathematik.uni-freiburg.deFebruary 7, 1997Abstractn+ 1 nested k-ary �xed point operators are more expressive than n. Thisholds on �nite structures for practically all �xed point logics.1 IntroductionFixed point logics are extensions of �rst order logic by �xed point operators, whichallow inductive de�nitions. They have turned out to be of importance in �nitemodel theoryIn most �xed point logics several nested �xed point operators can be collapsed toone without losing expressiveness. This is achieved by increasing the arity of the�xed point operator (i.e the arity of the second order induction variable). On theother hand, Grohe has shown in [Gro96] that k + 1-ary �xed point operators aremore expressive than k-ary �xed point operators. This lead to the conjecture thatnesting k-ary �xed point operators increases the expressive power.In the present paper we prove that this conjecture is true for all k and all reasonablelogics between deterministic transitive closure logic DTC and partial �xed pointlogic PFP. We show this on a class of �nite unordered structures of a �xed signaturewith a ternary relation.The result also holds on �nite graphs, but the graph reduction contains some trickybits and is not really worth the e�ort.On ordered structures, the above conjecture is still open for most cases. If it fails forleast �xed point logic LFP and some k � 2, this would imply thatLOGSPACE�TIME(nm) for some m 2 IN . I am not aware of any case in whichshowing the conjecture on ordered structures would have implications in complexitytheory of similar importance.Flum and Grohe observed ([FG97]) that the results of Mats and Thomas in [MT??]imply that the above conjecture is true on ordered structures for k = 1 and all logicsbetween least �xed point logic LFP and monadic second order logic.2 The ResultSome conventions: Univ(A) denotes the universe of the structure A, Aut(A) itsautomorphism group. Deviating from common practice, we use �; �; 
 for elementsof a structure.For a second order variable X, ar(X) is its arity. Whenever we write X�t, R�t or[PFPX�x ']�t, we assume that the arity of X or R, respectively, coincides with thelength of the tuple of terms �t (and the tuple of variables �x).1



De�nition 1 (PFP syntax) For a signature � the set of PFP[�] formulas isgiven by the following calculus:t1 :=t2 ; X�t; R�t ;R2�; ':' ; '; ('^ ) ; '9x' ; '[PFPX�x ']�t . �De�nition 2 (PFP semantics) The relation A j=  is de�ned as usual byinduction on  . In the main step for  = [PFPX�x '(X; �x)]�v we setXA0 := ;; XAi+1 := f�� 2 A j A j= '(XAi ; ��)g:If there is a k 2 IN with XAk+1 = XAk , we say XA1 exists and set XA1 := XAk .Finally, we de�ne:A j= [PFPX�x '(X; �x)]�� :, XA1 exists, and �� 2 XA1 �De�nition 3 (DTC(E)) Let E be a binary relation on a set M . The deter-ministic transitive closure DTC(E) of R is de�ned byDTC(E) := f(�; �) 2M j there exist n > 0 and e0; : : : ; en 2M such that� = e0; � = en, and ei+1 is the unique e with (ei; ei+1) 2 E for all i < ng. �Deterministic transitive closure logic DTC is �rst order logic extended by operatorsfor the deterministic transitive closure of de�nable 2k-ary relations. The HierarchyTheorem below implies a hierarchy theorem for all logics between DTC and PFP.In the proof we only need a very small subset of DTC. We do not use :=, :, _ or 8and we use DTC operators only on binary relations. To make the Hierarchy Theo-rem as strong as possible, we explicitly de�ne this subset and call it the restricteddeterministic transitive closure logic RDTC.De�nition 4 (RDTC[�] syntax) The set of RDTC[�] formulas is given bythe following calculus: R�t ;R2�; '; ('^ ) ; '9x' ; '[DTCxy ']st . �De�nition 5 (RDTC semantics)A j= [DTCxy '(x; y)]�� :, (�; �) 2 DTC( f(�0; �0) j A j= '(�0; �0)g ) �An approach in formalizing the nesting hierarchy would be to restrict the arity ofall �xed point operators to some k and then to consider the nesting number. Wetake a di�erent way and de�ne a rank function Qr on all �xed point formulas thatre�nes the hierarchy of nesting numbers for all arities k. Qr sums up the arities ofnested �xed point operators. Since Qr only counts second order variables, we callit the second order rank.De�nition 6 (Qr) The second order rank Qr is de�ned on all PFP and RDTCformulas by Qr( ) := 0; if  is an atomQr(:') := Qr(')Qr(' ^ �) := max(Qr(');Qr(�))Qr(9x') := Qr(')Qr([PFPX�x ']�t) := Qr(') + ar(X)Qr([DTCxy ']st) := Qr(') + 1 �2



Let us now �x the signature. We set �0 := fR; a; bg, where R is a ternary relationsymbol and a; b are constants.We are now in a position to write down the full result of this paper. The purposeof this paper is to prove the following Hierarchy Theorem:Theorem 7 (Hierarchy Theorem) For each n 2 IN there is an RDTC[�0]-sentence of second order rank n + 1, which on �nite structures is not equivalentto any PFP sentence of second order rank � n.PFP strongly contains RDTC in the sense that every RDTC formula is equivalentto a PFP formula of the same second order rank in which only unary �xed pointoperators occur. Therefore the result which was announced in the introduction isa corollary to the Hierarchy Theorem:Corollary 8 n+ 1 nested k-ary �xed point operators are more expressive than n.This holds for all sublogics of PFP that strongly contain RDTC in the above sense,most notably PFP, IFP, LFP, SFP, TC, DTC. For the de�nitions and whereaboutsof these logics see [EF95].Remark 9 If we delete the words \ei+1 is the unique e with" in de�nition 3, itbecomes a de�nition of the transitive closure TC(E). All DTC operators in thispaper can be replaced by TC operators without harm. Let RTC be analogue ofRDTC for the transitive closure operator. Then the above corollary also holdsfor all sublogics of PFP that strongly contain RTC. An example for this are theexistential fragments of LFP and TC. Note that RTC does not contain RDTC (RTCformulas are preserved under embeddings, but the deterministic transitive closureis not.).Remark 10 The Hierarchy Theorem also holds for simultaneous partial �xed pointlogic S-PFP instead of PFP, if we de�neQr([S-PFPX0�x0;:::;Xm�xm '0; : : : ; 'm]�t) := maxfQr('i)g+maxfQr(Xi)g. Extendingthe proofs given here to S-PFP involves no new ideas, but some notational overhead.Also for information on S-PFP, see [EF95].3 The GameTo prove that certain structures cannot be distinguished by formulas of second orderrank n, we will de�ne an Ehrenfeucht-Fra��ss�e type pebble game. As usual, in thisgame each pebble corresponds to a �rst order variable. Hence the second orderrank alone is not su�cient to de�ne the parameters for the game. Therefore weadditionally de�ne a �rst order rank qr, which counts �rst order variables.De�nition 11 (qr) The �rst order rank qr is de�ned on all PFP formulas by:qr( ) := 0; if  is an atomqr(:') := qr(')qr(' ^ �) := max(qr('); qr(�))qr(9x') := qr(') + 1 % Here is the di�erence to Qrqr([PFPX�x ']�t) := qr(') + ar(X) �3



We now de�ne the game G0(k; n;A;B) in such a way that if the duplicator wins1G0(k; n;A;B), then A j=  , B j=  for all PFP sentences  with qr( ) � k andQr( ) � n.It is derived from a game Grohe uses in [Gro96].De�nition 12 (G0(k; n;A;B)) For structures A and B the game G0(k; n;A;B)is played by two players on A and B with 2k pebbles P1; Q1 : : : Pk; Qk.We say that a pair (Pi; Qi) of pebbles is on the board in a situation of the game ifit is placed on the structures in that situation. The other pebbles are called free.Each situation of the game and each pebble on the board has a depth � 0. Eachdepth lower or equal to the depth of the situation has an arity � 0. The game startsin the situation with depth 0 and all pebbles free. The arity of depth 0 is de�nedto be 0. In each situation of the game the challenger selects one of the followingmoves:9-move: The challenger places a free pebble Pi on an element �i 2 A. The dupli-cator places the corresponding pebble Qi on an element �i 2 B. The depthof Pi and Qi is de�ned to be the current depth of the game.8-move: The challenger places a free pebble Qi on an element �i 2 B. The dupli-cator places the corresponding pebble Pi on an element �i 2 A. The depthof Pi and Qi is de�ned to be the current depth of the game.I-move: The depth of the game is increased by one. The challenger assigns an arityar(d) > 0 to the new depth d of the game, such a way thatP0�e�d ar(e) � n.R-move: The challenger `reduces'2 the depth d0 of the game to some d � d0 withar(d) > 0. Then she selects ar(d) pairs (Pi; Qi) of depth � d to be left on theboard. All other pebbles of depth � d are removed from the structures.In each situation the pairs of pebbled elements (�i; �i) and the pairs of constants(cA; cB) are called couples. The duplicator wins the play if in each situation thecouples form a partial isomorphism from A to B. �Theorem 13 (Game Theorem) Let � be a signature without function symbols.Suppose that A;B �-structures such that the duplicator wins G0(k; n;A;B). ThenA j=  , B j=  holds for all PFP sentences  with qr( ) � k and Qr( ) � n.Proof: We prove for every PFP[�] sentence  :(�) If A j=  and B 6j=  then the challenger has a winning strategy in everysituation of depth d, in which Qr( ) +P0�e�d ar(e) � n and at least qr( )pebbles are free.As the de�nition of the game is symmetric in A and B, the Game Theorem followsimmediately from (�). We prove (�) by induction on  , in either case advising thechallenger how to win:If  is an atom:  is an atomic sentence, so all terms occurring in  are constants.As  holds in A and not in B, the mapping between the constants of therespective structures is not a partial isomorphism. The duplicator has alreadylost in the start situation.1For a game G by \X wins G" we mean \X has a winning strategy for G".2The quotation remind of the fact that we do not exclude d = d0.4



If  = :':  holds in A but not in B, so ' holds in B but not in A. The induc-tion hypothesis gives a winning strategy for G0(qr(');Qr(');B;A). Use thiswinning strategy for ' with interchanged roles of A and B (9-moves become8-moves and vice versa).If  = ' ^ �: ' and � both hold in A, one of them does not hold in B. For thelatter use the winning strategy given by the induction hypothesis.If  = 9x'(x): Select an 9-move and place some pebble Pi on some �i 2 A forwhich '(�i) holds in A. The duplicator has to place Qi on an �i 2 B. '(�i)does not hold in B because otherwise  would. For the rest of the game regardx as a constant, being interpreted in A by �i and in B by �i. Use the winningstrategy that is given by the induction hypothesis for ', since there are stillqr( )� 1 = qr(') pebbles free and Qr( ) = Qr(').If  = [PFPX�x '(�x;X)]�t:De�ne XAi and XA1 as in de�nition 2. XA1 exists, because A j=  .Case I: XB1 also exists.As  is a sentence, all components of �t are constants. Since  holds in Abut not in B, there is i with �tA 2 XAi , but �tB =2 XBi . Now do an I-move,choose the arity of the new depth to be ar(X) and the claim (��) belowguarantees you a winning strategy.Case II: XB1 does not exist.Do l 8-moves, where l is the length of �x. Place Q1; : : : ; Ql to �� 2 A suchthat �� 2 XBi for in�nitely many i and �� =2 XBi for in�nitely many i.Then the duplicator places Pi; : : : ; Pl to some �� 2 B. If �� 2 XA1, there isan i with �� 2 XAi ; �� =2 XBi . Then as in case I use (��), doing an I-move.If �� =2 XA1, then there is an i with �� =2 XAi ; �� 2 XBi . Swap the roles ofA;B and also use (��).(��) For all i 2 IN the challenger has a winning strategy in a situation withdepth d, if:(i) There are couples (�1; �1); : : : ; (�l; �l), such that �� 2 XAi and�� =2 XBi .(ii) ar(d) � ar(X), at least qr(') pebbles are free andP0�e�d ar(e) + Qr(') � n.Proof of (��) via induction on i:For i = 0 there is nothing to show, since XA0 = ;. Now let i > 0 and thesituation of (��) be given for ��; ��. ' holds in A0 := (A; ��;XAi�1) whereas itdoes not hold in B0 := (B; ��;XBi�1). Play according to the winning strategyfor G := G0(qr(');Qr(');A0;B0), which is given for the current situation bythe induction hypothesis for '.Case 1 You win at the end of G because there are couples (�01; �01) : : : (�0l; �0l)such that ��0 2 XAi�1 and ��0 =2 XBi�1:In this case do an R-move, reducing the depth to d and selecting ��0 and��0 to be left on the board (as far as they are not constants anyway). Thesituation that is produced by this R-move matches (i) and (ii) for i� 1.Case 2: You win at the end of G because the couples (�0i; �0i) do not form apartial isomorphism from A0 to B0 for other reasons: This means thatyou've already won the original game.5



�In the de�nition of G0(n; k;A;B), de�ning ar(0) := 0 seems somewhat deliber-ate. Indeed, in this point we need more sophistication when proving the HierarchyTheorem.De�nition 14 (Gm(n; k;A;B);G�(n; k;A;B))For m > 0, the game Gm(n; k;A;B) is played like G0(n; k;A;B), except that thearity of depth 0 is de�ned to be m instead of 0.The game G�(n; k;A;B) is played like G0(n; k;A;B), except that the challenger isobliged to start with an I-move.For both of the above games in case n = 0, the duplicator is de�ned to win thegame i� the couples form a partial isomorphism in the start situation. �Proposition 15 The duplicator wins G0(n; k;A;B) i� for all 0 � m � n she winsGm(n; k;A;B).Proposition 16 The duplicator wins G�(n; k;A;B) i� for all 0 < m � n she winsGm(n; k;A;B).4 Assorted SequencesTo prove the Hierarchy Theorem, for every n 2 IN we have to construct pairsof �0-structures which are similar with respect to the above game, but can bedistinguished by RDTC formulas of second order rank n+1. These structures willbe complicated looking expansions of the now to be de�ned assorted sequences.De�nition 17 (assorted sequence) Y = (Set; <;Part) is an assorted se-quence if Set is a �nite set, < a total order on Set and Part a partition of Set(i.e. SPart = Set and 8L;M 2 Part : L \M = ;). �In the sequel Y = (Set; <;Part) is an arbitrary assorted sequence. The followingde�nitions are relative to Y .De�nition 18 (N) N := jSetj �De�nition 19 (i) i denotes the i-th element of (Set; <) �Thus 0 is the �rst, N� 1 the last element of (Set; <).De�nition 20 (Vert; is) Vert := (Set [ fNg) � fleft; rightg, where N is someindividual which is not an element of Set. For i 2 Set [ fNg; s 2 fleft; rightg, weabbreviate is := (i; s). The elements of Vert are called vertices of Y . �De�nition 21 (mirror) mirror : Vert ! Vert is de�ned by mirror(ileft) := irightand mirror(iright) := ileft �De�nition 22 (connector, ConnM) f is a connector for M 2 Part iff : M ! fk;�g and the number of elements of M that are mapped to � is even.ConnM is the set of connectors for M . �A connector is also a partial function on Set.De�nition 23 (Conn) Conn := SM2Part ConnM �6



De�nition 24 (Y) Y is the fRg-structure de�ned byUniv(Y) := Vert [ Conn and��
 2 RY :, � = is; � = i+ 1t for some i 2 Set; s; t 2 fleft; rightg;
 2 Conn with i 2 def(
)and either 
(i) =k ^ s = t or 
(i) = � ^ s 6= t �De�nition 25 (Yk) Yk is the �0-extension of Y that is de�ned byaYk := 0right; bYk := Nright �De�nition 26 (Y�) Y� is the �0-extension of Y that is de�ned byaY� := 0right; bY� := Nleft �Visualizing ternary relations is di�cult. The following de�nition enables partialvisualizations.De�nition 27 (graph of a connector) For a connector f :Ef := f�� j ��f 2 RY g.Gf := (Vert; Ef ) is called the graph of f . �As mentioned before, the above de�nitions are relative to Y = (Set; <;Part). Whenreferring to other assorted sequences, we use upper indices. For example if we speakabout an assorted sequence U , this implies U = (SetU ; <U ;PartU ), NU = jSetU j, iUthe i-th element of (SetU ; <U ) and so on. Slightly deviating from this convention,we write U instead of YU for the structure associated to U .De�nition 28 (Simple(n)) Simple(n) is the assorted sequence with NSimple(n) =n andPartSimple(n) = fSetSimple(n)g. �Example 29 Let Y = Simple(1). Then Conn has one element with the followinggraph
ss ss--0left 1left

0right 1rightExample 30 Let Y = Simple(2). Then Conn has two elements with the followinggraphs
ss ss ss-- --0left 1left 2left

0right 1right 2right ss ss ss�����@@@@R �����@@@@R0left 1left 2left
0right 1right 2right7



Let Y = (Set; <;Part) be an arbitrary assorted sequence again.Proposition 31 For all � 2 Vert, f�;mirror(�)g is invariant under Aut(Y).Proposition 32 Aut(Yk) = Aut(Y�) � Aut(Y)Proposition 33 For all M 2 Part, ConnM is invariant under Aut(Y).Proposition 34 For all M 2 Part, Aut(Y) operates transitive on ConnM (i.e. forall f; g 2 ConnM , there is an automorphism of Y that maps f to g).De�nition 35 (U + V ) Let U; V be assorted sequences. Then U + V is theassorted sequence with SetU+V := SetU [ SetV , PartU+V = PartU [ PartV and�:=<U+V de�ned by0U � : : : � N� 1U � 0V � : : : � N� 1V �Convention 36 When we write `U + V ', we tacitly assume NU = 0VProposition 37 With the above convention we have for W = U + V :Univ(W) = Univ(U) [ Univ(V)RW = RU [ RVExample 38 Let U; V be copies of Simple(1), W := U + V . Then ConnW has twoelements with the following graphs:
ss ss ss--0Uleft 1Uleft = 0Vleft 1Vleft

0Uright 1Uright = 0Vright 1Vright ss ss ss--0Uleft 1Uleft = 0Vleft 1Vleft
0Uright 1Uright = 0Vright 1VrightDe�nition 39 (Zip(Y )) Let V be an assorted sequence. Zip(V ) is the assortedsequence withSetZip(V ) := SetV [ Inlay, where Inlay := f00; 10; : : : ;N� 10g, PartZip(V ) := PartV [fInlayg and �:=<Zip(V ) de�ned by 0V � 00 � 1V � 10 � : : : � N� 1V � N� 10 �Convention 40 We assume NZip(V ) = NV .
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Example 41 Let W be as in example 38, Z := Zip(W ), and Inlay as in de�nition39. Then ConnZ has four elements with the following graphs:
rr rr rr rr rr--0Wleft 00 left 1Wleft 10 left 2Wleft0Wright 00right 1Wright 10right 2Wright rr rr rr rr rr--
rr rr rr rr rr-- -- rr rr rr rr rr����@@@R ����@@@RProposition 42 Let V be an assorted sequence and U := Zip(V ). Let Inlay be asin de�nition 39. Assume that f and g are partial automorphisms of U with� def(f) = def(g) =: def,� def \ ConnInlay = ;,� for all � 2 def \ VertU , f(�); g(�) 2 f�;mirror(�)g� for all � 2 def \ ConnV , f(�) = g(�).Then there is an automorphism � of U for which ConnV is �x under � and f = ��g.5 The StructuresFor the rest of the paper, �x an arbitrary k 2 IN To prove the Hierarchy Theorem,we will de�ne assorted sequences Vn (depending on k) and �0-formulas �n (not de-pending on k) such that Vnk j= �n, Vn� 6j= �n and the duplicator wins G0(n; k;Vnk;Vn�).Un and �n are intermediate stages in the de�nition of Vn and �n.De�nition 43 (Un; Vn) Un and Vn are the assorted sequences simultaneouslyde�ned by� U0 := Simple(1),� For n � 0: Vn := U1n +D1 + U2n +D2 + : : :+ U2kn +D2k , where U in is a copyof Un and Di is a copy of Simple(2) for all 1 � i � 2k,� For n > 0: Un := Zip(Vn�1). �6 The FormulasIn all formulas in this section, the variables x1 and x2 are free (among possibly oth-ers). We just write ' instead of '(x1; x2). As usual, when for example substitutingx1 and x2 by y and z we write '(y; z). 9



In the sequel we use the following abbreviations:Rf := Rx1x2f'+  := 9z'(x1; z) ^  (z; x2)[DTC '] := [DTCyz '(y; z)]x1x2De�nition 44 (sequential) ' is sequential if it can be derived by the followingcalculus:Rf ; '; ('+ ) ; '9f' ; '[DTC '] . �Proposition 45 Suppose that  it a sequential formula for which Y j=  (�; �)holds.Then there is an ` 9fRf'-path from � to �.De�nition 46 (�) � := 9f(Rf +Rf ) �Proposition 47 Y = Simple(2) , Yk j= �(a; b)Proposition 48 Suppose U = Zip(Y ). Let Inlay be as in de�nition 39, 1l be theconnector for Inlay that maps all i0 2 Inlay to k. Let  (�v) be a sequential formula, �vbeing all free variables of  , including x1 and x2. Then for all �� 2 Y we haveY j=  (��) , U j=  [ RfRf +R1l ](��)Here  [ RfRf+R1l ] means the sequential formula  with all occurrences of Rf replacedby Rf +R1lProposition 49 Let U; Y; Inlay; 1l as in proposition 48. Let  (x1; x2) be a sequentialformula with no other free variables than x1 and x2. ThenYk j=  (a; b) , Uk j=  [ RfRf+R1l ](a; b), Uk j=  [ RfRf+R� ](a; b) ( for all � 2 ConnInlay), Uk j= 9g [ RfRf+Rg ](a; b)The same holds for � instead of k.(Take notice of convention 40. For the second equivalence use proposition 34.)De�nition 50 (�n; �n) �n and �n are the sequential formulas simultaneouslyde�ned by� �0 := 9fRf� For n � 0: �n := [DTC (�n + �)]� For n > 0: �n := 9g�n�1[ RfRf+Rg ] �Proposition 51 Qr(�n) = Qr(�n) + 1 = n+ 1Theorem 52(i) Unk j= �n(a; b); Un� 6j= �n(a; b)(ii) Vnk j= �n(a; b); Vn�(Yn) 6j= �n(a; b)10



Proof: [By simultaneous induction on n](i) For n = 0: obvious.(ii) For n � 0: Let U in, Di be as in de�nition 43. As in proposition 37 regard Vnas the concatenation of the structures U1n;D1; : : : ;U2kn ;D2k . Remember thatby convention 36 for s 2 fleft; rightg: NUins = 0Dis and NDis = 0Ui+1ns .Recall that �n := [DTC �n + �]. We have to show that there is a deterministic�n + �-path from 0U1nright to ND2kright , but not from 0U1nright to ND2kleft . For both it issu�cient to showCLAIM: Let � = 0Uinright. Then Vn j= (�n + �)(�; �) , � = NDiright.\(": easy.\)": By de�nition, there is an element 
 2 Vn such that Vn j= �n(�; 
) andVn j= �(
; �). There is an element g 2 ConnVn such that there is a `9f(Rf +Rg)'-path from � to 
 (apply theorem 45 to �n�1 and recall �n := 9g�n�1[ RfRf+Rg ]).Clearly, g 2 U in and hence 
 2 VertUin . From Vn j= �(
; �) we see that
 2 f0Djright; 0Djleftg for some j (remember Un = Zip(Vn�1) to con�rm that thereis no other possibility). We have j = i, because otherwise 
 =2 U in. In fact,
 = 0Diright and hence � = NDiright. 
 = 0Dileft = NUinleft would contradict (i), becausewe started with Vn j= �n(�; 
).(i) For n > 0: Follows from (ii) for n� 1 by proposition 49. �7 Playing the GameThe following de�nitions are for m 2 IN [ f�gDe�nition 53 (Gm(n; k; Y )) Gm(n; k; Y ) := Gm(n; k;Yk;Y�) �Note that Yk and Y� share their universe and thus Gm(n; k; Y ) actually is a gameplayed on one structure.De�nition 54 (neat) A situation of Gm(n; k; Y ) is neat, if the couples (in thesense of de�nition 12) form a partial isomorphism and for all couples (�; �) either� 2 Conn and � = � or � 2 Vert and � 2 f�;mirror(�)g. �De�nition 55 (isomorphic situations) Two situationsS and T of Gm(n; k; Y )are isomorphic if there is an automorphism � of Y k such that S can be convertedto T by relocating all pebbles Qi (but not the Pi) according to �. �De�nition 56 (neatly wins) The duplicator neatly wins Gm(n; k; Y ) if shehas a strategy Str, such that any situation that can occur if she uses Str is isomorphicto a neat situation. Then Str is called a neat strategy. �Proposition 57 If the duplicator has a neat strategy in a situation S and S isisomorphic to T, then she has also a neat strategy in the situation T.Proposition 58 Propositions 15 and 16 still hold if we replace \wins" by \neatlywins". 11



De�nition 59 (Q-move) A Q-move is an 9-move or an 8-move. �De�nition 60 (to copy, to mirror) Let in the game Gm(n; k; Y ) the dupli-cator make a Q-move to some � 2 Y . Then we say that the duplicator copies themove, if she places the corresponding pebble to � as well. On the other hand, if� 2 Vert and the duplicator places the corresponding pebble to mirror, then we saythat she mirrors the move.For � 2 Vert, a couple (�; �) is called even, if � = � and odd, if � = mirror(�). �Proposition 61 Let V be an assorted sequence, U := Zip(V ), Inlay be as in de�-nition 39. Let S and T be neat situations of Gm(n; k; Y ) for which� the depth of the game is 0,� no pebbles are on ConnInlay.Let all pebbles Pi in S be at the same place as in T. Then S and T are isomorphic.(Use proposition 42.)Theorem 62 For n 2 IN :(i) The duplicator neatly wins G�(n; k; Un).(ii) The duplicator neatly wins G0(n; k; Vn).Proof:(i) for n = 0: By de�nition the duplicator wins in the start situation, which isneat.(ii) for n � 0: Let U in; Di be as in de�nition 43. In the initial situation we have pre-cisely two couples, the even couple (aYk ; aY�) and the odd couple (bYk ; bY�).Let us tell the duplicator how to win G0(n; k; Vn) neatly:(a) Before the �rst I-move: Copy every Q-move to a connector.Copy every Q-move to a vertex, unless the pebbled vertex is closer tosome odd couple than to any even couple. In that case mirror the move.Check that when the �rst I-move is done, there is an l; 1 � l � 2k, such that� there are no couples on U ln n f0Ulnleft ; 0Ulnright; NUlnleft ;NUlnrightg,� for all i < l all couples on U in and Di are even� for all i > l all couples on U in and Di are odd.Note that no R-move back to depth 0 is possible. Thus on U ln, we are in thesame situation as in G�(n; k; Un) when the obligatory initial I-move is done.By (i) there is a neat strategy Str for that game.(b) After the �rst I-move: Copy every Q-move to U in; i < l.Mirror every Q-move to U in; i > l.Answer all moves to U ln according to Str.In every situation, the automorphism of U lnk that makes the situationisomorphic to a neat situation, can be extended by identity to an auto-morphism of Vnk.
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(i) for n > 0: Remember Un = Zip(Vn�1). Let Inlay be as in de�nition 39. Bypropositions 16 and 58 it is su�cient to show that the duplicator neatly winsGm(n; k; Un) for every m > 0. Let m be given. By (ii) for n� 1 and propo-sitions 15 and 58 there is a neat strategy Str for Gm�1(n� 1; k; Vn�1). Notethat Gm(m; : : :) and Gm�1(n� 1; : : :) only di�er in the number of couplesthat remain on the board in R-moves to depth 0.Now we can advise the duplicator how to win Gm(n; k; Y ) neatly:(a) Before the �rst R-move to depth 0: Answer all Q-moves to elementsVn�1 according to Str.Copy all Q-moves to ConnInlay.For a Q-move to some i0s; i0 2 Inlay: Ask Str whether to copy or to mirrora Q-move to i+ 1Vn�1s and carry over Str's instruction to i0s.(b) R-move to depth 0:Case 1: At least one pair (Pi; Qi) of pebbles remains on ConnInlay: Ignorethat pair and proceed as in (a). We can ignore (Pi; Qi) because theyare both located on the same � 2 ConnInlay. This cannot interferewith the strategy in (a).Case 2: All couples are removed from ConnInlay: Play a virtual gameof Gm(n; k; Un). Let the virtual challenger start with a series of 9-moves and let him place the virtual Pi to where the real Pi are. An-swer these virtual moves as in (a). By proposition 61, the resultingvirtual situation is isomorphic to the real situation. By proposition57, we can assume that the inducing automorphism equals identityand proceed as in (a). �Now the Hierarchy Theorem (theorem 7) follows from the Game Theorem (theorem13), theorem 52,(ii) and theorem 62,(ii).Acknowledgements. I would like to thank J�org Flum for asking the right questionand for reading a completely unreadable �rst version of this paper; J�org Flum,Martin Grohe and Bertram Lud�ascher for helpful discussions; Sarah Arnold andHans Scheuermann for helping me with my English style. It not is misstake of themthat it still not very good.A References[EF95] H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer-Verlag,1995.[FG97] J. Flum and M. Grohe. Private communication.[Gro96] M. Grohe. Arity hierarchies. Annals of pure and applied logic vol. 82, pp103-163.[MT??] O. Matz and W. Thomas. The monadic quanti�er alternation hierarchyover graphs is in�nite. To appear.
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