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Abstract

n + 1 nested k-ary fixed point operators are more expressive than n. This
holds on finite structures for practically all fixed point logics.

1 Introduction

Fixed point logics are extensions of first order logic by fixed point operators, which
allow inductive definitions. They have turned out to be of importance in finite
model theory

In most fixed point logics several nested fixed point operators can be collapsed to
one without losing expressiveness. This is achieved by increasing the arity of the
fixed point operator (i.e the arity of the second order induction variable). On the
other hand, Grohe has shown in [Gro96] that k + 1-ary fixed point operators are
more expressive than k-ary fixed point operators. This lead to the conjecture that
nesting k-ary fixed point operators increases the expressive power.

In the present paper we prove that this conjecture is true for all £ and all reasonable
logics between deterministic transitive closure logic DTC and partial fixed point
logic PFP. We show this on a class of finite unordered structures of a fixed signature
with a ternary relation.

The result also holds on finite graphs, but the graph reduction contains some tricky
bits and is not really worth the effort.

On ordered structures, the above conjecture is still open for most cases. If it fails for
least fixed point logic LFP and some k > 2, this would imply that
LOGSPACECTIME(n™) for some m € IN. I am not aware of any case in which
showing the conjecture on ordered structures would have implications in complexity
theory of similar importance.

Flum and Grohe observed ([FG97]) that the results of Mats and Thomas in [MT?7]
imply that the above conjecture is true on ordered structures for £ = 1 and all logics
between least fixed point logic LFP and monadic second order logic.

2 The Result

Some conventions: Univ(A) denotes the universe of the structure A, Aut(A) its
automorphism group. Deviating from common practice, we use «, 3,y for elements
of a structure.

For a second order variable X, ar(X) is its arity. Whenever we write X#, Rt or
[PFP . ¢lt, we assume that the arity of X or R, respectively, coincides with the
length of the tuple of terms # (and the tuple of variables z).




Definition 1 (PFP syntax) For a signature o the set of PFP[o] formulas is
given by the following calculus:
Y. e . @ .

S e ..
ti=t,) Xi' R S (pAY)? Trp? [PFP__ ]t
Xz

Definition 2 (PFP semantics) The relation A |= ¢ is defined as usual by
induction on ¢. In the main step for ¢» = [PFPy_. o(X,Z)]0 we set

Xgt=0, XA, ={acA|AE XA &)}

If there is a k € IN with X,;“H = XA, we say X2 exists and set X2 = XA
Finally, we define:

Al [PFPy, ¢(X,7)]a & X2 exists, and @ € X2

a
Definition 3 (DTC(E)) Let E be a binary relation on a set M. The deter-
ministic transitive closure DTC(E) of R is defined by
DTC(E) := {(a,f) € M | there exist n > 0 and ey, . ..,e, € M such that
a=-ep, =ep, and e;41 is the unique e with (e;,e;41) € E for alli <n}. O

Deterministic transitive closure logic DTC is first order logic extended by operators
for the deterministic transitive closure of definable 2k-ary relations. The Hierarchy
Theorem below implies a hierarchy theorem for all logics between DTC and PFP.
In the proof we only need a very small subset of DTC. We do not use =, =, V or V
and we use DTC operators only on binary relations. To make the Hierarchy Theo-
rem as strong as possible, we explicitly define this subset and call it the restricted
deterministic transitive closure logic RDTC.

Definition 4 (RDTC[o] syntax) The set of RDTCJo] formulas is given by

. . o . Q. %
the following calculus: RiFE; (oAG) =Py [DTCM <p]st . O

Definition 5 (RDTC semantics)

AE[DTC,, ¢ ylas = (a,8) e DTC({(«,5) | A ¢/, 5)})
O

An approach in formalizing the nesting hierarchy would be to restrict the arity of
all fixed point operators to some k and then to consider the nesting number. We
take a different way and define a rank function @Qr on all fixed point formulas that
refines the hierarchy of nesting numbers for all arities k. Qr sums up the arities of
nested fixed point operators. Since @Qr only counts second order variables, we call
it the second order rank.

Definition 6 (Qr) The second order rank Qr is defined on all PFP and RDTC
formulas by

Qr(v) := 0, if ¥ is an atom
Qr(—yp) = Qr(p)

Qr(p A X) = max(Qr(p), Qr(x))
Qr(3zyp) = Qr(p)

Qr([PFPy; ¢]t) = Qr(p)+ar(X)
Qr([DTC,, ¢]st) = Qr(p)+1



Let us now fix the signature. We set o¢ := {R,a, b}, where R is a ternary relation
symbol and a, b are constants.

We are now in a position to write down the full result of this paper. The purpose
of this paper is to prove the following Hierarchy Theorem:

Theorem 7 (Hierarchy Theorem) For each n € IN there is an RDTCJoo]-
sentence of second order rank n + 1, which on finite structures is not equivalent
to any PFP sentence of second order rank < n.

PFP strongly contains RDTC in the sense that every RDTC formula is equivalent
to a PFP formula of the same second order rank in which only unary fixed point
operators occur. Therefore the result which was announced in the introduction is
a corollary to the Hierarchy Theorem:

Corollary 8 n + 1 nested k-ary fixed point operators are more expressive than n.

This holds for all sublogics of PFP that strongly contain RDTC in the above sense,
most notably PFP, IFP, LFP, SFP, TC, DTC. For the definitions and whereabouts
of these logics see [EF95].

Remark 9 If we delete the words “e;y1 is the unique e with” in definition 3, it
becomes a definition of the transitive closure TC(E). All DTC operators in this
paper can be replaced by TC operators without harm. Let RTC be analogue of
RDTC for the transitive closure operator. Then the above corollary also holds
for all sublogics of PFP that strongly contain RTC. An example for this are the
existential fragments of LFP and TC. Note that RTC does not contain RDTC (RTC
formulas are preserved under embeddings, but the deterministic transitive closure
is not.).

Remark 10 The Hierarchy Theorem also holds for simultaneous partial fixed point
logic S-PFP instead of PFP, if we define

Qr([S-PFPxyz0,... X0z P05 - @mlt) := max{Qr(y;)} +max{Qr(X;)}. Extending
the proofs given here to S-PFP involves no new ideas, but some notational overhead.

Also for information on S-PFP, see [EF95].

3 The Game

To prove that certain structures cannot be distinguished by formulas of second order
rank n, we will define an Ehrenfeucht-Fraissé type pebble game. As usual, in this
game each pebble corresponds to a first order variable. Hence the second order
rank alone is not sufficient to define the parameters for the game. Therefore we
additionally define a first order rank qr, which counts first order variables.

Definition 11 (qr) The first order rank qr is defined on all PFP formulas by:

qr(e) = 0, if ¢ is an atom

ar(=p) = ar(p)

qr(e A x) = max(qr(p), ar(x))

qr(Jzp) = qr(p)+1 % Here is the difference to Qr
ar([PFPy; ¢lf) = ar(p) +ar(X)



We now define the game Gg(k,n, A, B) in such a way that if the duplicator wins'
Go(k,n, A, B), then A =1 < B |= 1 for all PFP sentences ¢ with qr(y) < k and
Qr(y) < n.

It is derived from a game Grohe uses in [Gro96].

Definition 12 (Gg(k,n, A, B)) For structures A and B the game Go(k,n, A, B)
is played by two players on A and B with 2k pebbles Py, Q1 ... Py, Q.

We say that a pair (P;, Q;) of pebbles is on the board in a situation of the game if
it is placed on the structures in that situation. The other pebbles are called free.
Each situation of the game and each pebble on the board has a depth > 0. Each
depth lower or equal to the depth of the situation has an arity > 0. The game starts
in the situation with depth 0 and all pebbles free. The arity of depth 0 is defined
to be 0. In each situation of the game the challenger selects one of the following
moves:

F-move: The challenger places a free pebble P; on an element o; € A. The dupli-
cator places the corresponding pebble @; on an element 3; € B. The depth
of P; and Q; is defined to be the current depth of the game.

V-move: The challenger places a free pebble @); on an element 3; € B. The dupli-
cator places the corresponding pebble P; on an element «; € A. The depth
of P; and @; is defined to be the current depth of the game.

I-move: The depth of the game is increased by one. The challenger assigns an arity
ar(d) > 0 to the new depth d of the game, such a way that > .., ar(e) < n.

R-move: The challenger ‘reduces’® the depth d’ of the game to some d < d' with
ar(d) > 0. Then she selects ar(d) pairs (P;, Q;) of depth > d to be left on the
board. All other pebbles of depth > d are removed from the structures.

In each situation the pairs of pebbled elements (a;, 3;) and the pairs of constants
(cA,cB) are called couples. The duplicator wins the play if in each situation the
couples form a partial isomorphism from A to B. O

Theorem 13 (Game Theorem) Let o be a signature without function symbols.
Suppose that A, B o-structures such that the duplicator wins Go(k,n, A, B). Then
A= < B =1 holds for all PFP sentences v with qr(vy) < k and Qr(¢) < n.

Proof: We prove for every PFP[o] sentence v:

(x) If A =1 and B [~ ¢ then the challenger has a winning strategy in every
situation of depth d, in which Qr(¢) + 3 <.~ ar(e) < n and at least qr(z))
pebbles are free. -

As the definition of the game is symmetric in A and B, the Game Theorem follows
immediately from (x). We prove (x) by induction on ¢, in either case advising the
challenger how to win:

If ¢ is an atom: 1) is an atomic sentence, so all terms occurring in ) are constants.
As 9 holds in A and not in B, the mapping between the constants of the
respective structures is not a partial isomorphism. The duplicator has already
lost in the start situation.

1For a game G by “X wins G” we mean “X has a winning strategy for G”.
2The quotation remind of the fact that we do not exclude d = d'.



If ¢ = =p: ¢ holds in A but not in B, so ¢ holds in B but not in 4. The induc-
tion hypothesis gives a winning strategy for Go(qr(y), Qr(y), B, A). Use this
winning strategy for ¢ with interchanged roles of 4 and B (3-moves become
V-moves and vice versa).

If v = ¢ A x: ¢ and x both hold in A, one of them does not hold in B. For the
latter use the winning strategy given by the induction hypothesis.

If v = Jzp(x): Select an F-move and place some pebble P; on some «; € A for
which («a;) holds in A. The duplicator has to place @; on an §8; € B. ¢(8;)
does not hold in B because otherwise 1) would. For the rest of the game regard
z as a constant, being interpreted in A by «; and in B by ;. Use the winning
strategy that is given by the induction hypothesis for ¢, since there are still

qr(y) — 1 = qr(p) pebbles free and Qr(v) = Qr(yp).

If = [PFPy, o(Z, X)]t:
Define X7 and X2 as in definition 2. XA exists, because A = 1.

Case I: X5Z also exists.
As 1) is a sentence, all components of £ are constants. Since ¢ holds in A
but not in B, there is i with #4 € X, but % ¢ XZ. Now do an I-move,
choose the arity of the new depth to be ar(X) and the claim (xx) below
guarantees you a winning strategy.

Case II: X2 does not exist.
Do [ V-moves, where [ is the length of Z. Place @1,...,Q; to @ € A such
that & € X7 for infinitely many i and & ¢ X7 for infinitely many i.
Then the duplicator places P;, ..., P to some § € B. If & € X2, there is
an i with a € XZA,B ¢ XP. Then as in case I use (x*), doing an I-move.
If @ ¢ X2, then there is an i with @ ¢ X*,3 € XB. Swap the roles of
A, B and also use (xx).

(xx) For all ¢ € IV the challenger has a winning strategy in a situation with
depth d, if:

(i) There are couples (a1, 81), .. (on, B), such that & € XA and
B¢ XE.

(ii) ar(d) > ar(X), at least qr(y) pebbles are free and
> o<e<adr(e) + Qr(p) < n.

Proof of (x%) via induction on i:

For i = 0 there is nothing to show, since Xg* = (). Now let i > 0 and the
situation of (x%) be given for @, 3. ¢ holds in A’ := (A, @, X/A,) whereas it
does not hold in B’ := (B, 3,XP |). Play according to the winning strategy
for G := Go(qr(p), Qr(p), A’, B'), which is given for the current situation by
the induction hypothesis for .

Case 1 You win at the end of G because there are couples (o}, 51) ... (o], 3;)
such that @ € XA, and 3’ ¢ XB |:
In this case do an R-move, reducing the depth to d and selecting &’ and
(' to be left on the board (as far as they are not constants anyway). The
situation that is produced by this R-move matches (i) and (ii) for ¢ — 1.

Case 2: You win at the end of G because the couples (o}, 3}) do not form a
partial isomorphism from A’ to B’ for other reasons: This means that

you’ve already won the original game.



In the definition of Go(n,k, A, B), defining ar(0) := 0 seems somewhat deliber-
ate. Indeed, in this point we need more sophistication when proving the Hierarchy
Theorem.

Definition 14 (G,,(n,k, A, B),G.(n,k, A, B))

For m > 0, the game G,,(n, k, A, B) is played like Go(n, k, A, B), except that the
arity of depth 0 is defined to be m instead of 0.

The game G.(n, k, A, B) is played like Go(n, k, A, B), except that the challenger is
obliged to start with an I-move.

For both of the above games in case n = 0, the duplicator is defined to win the
game iff the couples form a partial isomorphism in the start situation. O

Proposition 15 The duplicator wins Go(n, k, A, B) iff for all 0 < m < n she wins
Gm(n, k, A, B).

Proposition 16 The duplicator wins G.(n, k, A, B) iff for all 0 < m < n she wins
Gm(n,k, A, B).

4 Assorted Sequences

To prove the Hierarchy Theorem, for every n € IN we have to construct pairs
of og-structures which are similar with respect to the above game, but can be
distinguished by RDTC formulas of second order rank n + 1. These structures will
be complicated looking expansions of the now to be defined assorted sequences.

Definition 17 (assorted sequence) Y = (Set, <,Part) is an assorted se-
quence if Set is a finite set, < a total order on Set and Part a partition of Set
(i.e. JPart =Set and VL, M € Part: LN M = 0). O

In the sequel Y = (Set, <, Part) is an arbitrary assorted sequence. The following
definitions are relative to Y.

Definition 18 (N) N := |Set| O
Definition 19 (i) i denotes the i-th element of (Set, <) O
Thus 0 is the first, N — 1 the last element of (Set, <).

Definition 20 (Vert,i,) Vert := (Set U {N}) x {left, right}, where N is some
individual which is not an element of Set. For i € Set U {N},s € {left,right}, we

abbreviate i, := (4, s). The elements of Vert are called vertices of Y. O
Definition 21 (mirror) mirror : Vert — Vert is defined by mirror(ijes) := iyight
and mirror (isghe) = beg O
Definition 22 (connector, Conn™) f is a connector for M € Part if
f:M — {]|,x} and the number of elements of M that are mapped to X is even.
Conn™ is the set of connectors for M. O

A connector is also a partial function on Set.

Definition 23 (Conn) Conn := Uscpant Conn™ O



Definition 24 ()) Y is the {R}-structure defined by
Univ(Y) := Vert U Conn and

afy € RY & a=i,B=i+1, for some i € Set, s,t € {left, right},
v € Conn with 7 € def(v)
and either v(i) =||As=1t or v(i) = XAs#t

O
Definition 25 (yll) VIl is the og-extension of Y that is defined by
o' = Oright ' = Nright i
Definition 26 ()*) Y* is the og-extension of ) that is defined by
o’ = Oright> B o= Nyege i

Visualizing ternary relations is difficult. The following definition enables partial
visualizations.

Definition 27 (graph of a connector) For a connector f:
E;:={aB|aBf € RV}.
Gy := (Vert, Ey) is called the graph of f. O

As mentioned before, the above definitions are relative to Y = (Set, <, Part). When
referring to other assorted sequences, we use upper indices. For example if we speak
about an assorted sequence U, this implies U = (Set”, <V, Part”), NU = |Set"|, iV
the i-th element of (Set”, <V) and so on. Slightly deviating from this convention,
we write U instead of YU for the structure associated to U.

Definition 28 (Simple(n)) Simple(n) is the assorted sequence with NSmple(n) —
n and
PartSimpIe(n) — {SetSimpIe(n)}_ 0

Example 29 Let Y = Simple(1). Then Conn has one element with the following
graph

Ojefy Liefe

oe——0

Example 30 Let Y = Simple(2). Then Conn has two elements with the following
graphs

Orefy Liege Ziest Orefe Liege Ziest
(] [ J [ J [ J [ J [ J
(] [ J [ J [ J [ J [ J

gright lright 2right gright lright 2right




Let Y = (Set, <, Part) be an arbitrary assorted sequence again.

Proposition 31 For all a € Vert, {a, mirror(a)} is invariant under Aut()).

Proposition 32 Aut(Y!) = Aut(Y*) C Aut())

Proposition 33 For all M € Part, Conn™ is invariant under Aut(Y).

Proposition 34 For all M € Part, Aut()) operates transitive on Conn™ (i.e. for
all f,g € Conn™ | there is an automorphism of Y that maps f to g)-

Definition 35 (U + V)

Let U,V be assorted sequences. Then U + V is the

assorted sequence with Set”*V .= SetV U SetV, PartV*V = Part’ U PartV and
<:=<UtV by
0V <...<N=-1Y <0V <...<N=1Y O

Convention 36 When we write U + V’, we tacitly assume NY =0V

Proposition 37 With the above convention we have for W =U + V' :
Univ(W) = Univ (i) U Univ(V)

RY = RY“URY

Example 38 Let U,V be copies of Simple(1), W := U + V. Then Conn" has two

elements with the following graphs:

U U _ gV
gIeft lIeft - QIeﬂ:

o———o

oe——0

U U _ogv
Qright lright - Qright

v
=left

v
lright

U U _ gV \4
gIeﬂ: lIeft - Qleft lIeﬂ:
[ ] oe— 0
[ ] e—» 0

U Uu _ogv \4
Qright lright - Qright lright

Definition 39 (Zip(Y))
sequence

Let V be an assorted sequence. Zip(V') is the assorted

with

Set”?P(V) .= Set” U Inlay, where Inlay := {0',1',...,N = 1'}, Part??") .= Part” U
{Inlay} and <:=<ZP(V) defined by 0¥ <0’ <1V <1'<...<N—-1Y <N-1 O

Convention 40 We assume NZip



Example 41 Let W be as in example 38, Z := Zip(W), and Inlay as in definition
89. Then Conn? has four elements with the following graphs:

w ’ w ! w

QIeft O refe lIeft Lt 2Ie\‘t
o— e . . . . . o— o °
o— o . . ° . . o— o °
w ’ w ’ w

Qright 0 right lright 1 right 2right
. o— o o—»eo ° o><o o><o
. o—»eo o—»eo . . . .

Proposition 42 Let V be an assorted sequence and U := Zip(V'). Let Inlay be as
in definition 39. Assume that f and g are partial automorphisms of U with

o def(f) = def(g) =: def,

e defn Conn™? = ¢,

o for all a € defNVert?, f(a),g(a) € {a, mirror(a)}
e for all a € defn Conn"', f(a) = g(a).

Then there is an automorphism p of U for which Conn" is fiz under p and f = poyg.

5 The Structures

For the rest of the paper, fix an arbitrary k € IV To prove the Hierarchy Theorem,

we will define assorted sequences V;, (depending on k) and og-formulas v, (not de-
pending on k) such that V.| |= v, V,,* B vy, and the duplicator wins Go(n, k, Vull, 1V, %).
U, and v, are intermediate stages in the definition of V}, and v,.

Definition 43 (U,,V.,) U, and V,, are the assorted sequences simultaneously
defined by

e Uy := Simple(1),

o Forn>0: Vy:= UL+ D' + U2+ D> +...+ U2 + D>, where U is a copy
of U, and D is a copy of Simple(2) for all 1 <14 < 2%,

e Forn > 0: U, := Zip(V,—1).

6 The Formulas

In all formulas in this section, the variables x; and z5 are free (among possibly oth-
ers). We just write ¢ instead of p(z1,z2). As usual, when for example substituting
z1 and x2 by y and z we write ¢(y, z).



In the sequel we use the following abbreviations:

Rf = Rl‘ll‘gf
p+y = Jzp(z1,2) A(z, 72)
[DTC ¢] := [DTC,, ¢(y,2)]z122

Definition 44 (sequential)  is sequential if it can be derived by the following
calculus:

. b . P . @ 0
Ry (p+y) Ffe’ [ore o]

Proposition 45 Suppose that v it a sequential formula for which Y |= (o, )
holds.
Then there is an ‘3f R¢’-path from o to (3.

Definition 46 (0) 0 :=3f(R; + Ry) O
Proposition 47 Y = Simple(2) & VI |=6(a,b)

Proposition 48 Suppose U = Zip(Y'). Let Inlay be as in definition 39, 1 be the
connector for Inlay that maps all i’ € Inlay to ||. Let ¢)(0) be a sequential formula, v
being all free variables of ¥, including x1 and x>. Then for all @ € Y we have

Ry

YEY(@) & UE %ZJ[m

l(@)
Here w[%] means the sequential formula 1) with all occurrences of Ry replaced
by Ry + Ry

Proposition 49 Let U,Y, Inlay, 1l as in proposition 48. Let (x1,x2) be a sequential
formula with no other free variables than x1 and x5. Then

Ve a,b) & Ul =y ]e,b)

o Ul E MR,TRQ](G’ b)  ( for all a € Conn'?)

s Ul |= Hgﬁb[Rf}ing](a,b)

The same holds for x instead of ||.

(Take notice of convention 40. For the second equivalence use proposition 3/.)

Definition 50 (v,,vy,) v, and v, are the sequential formulas simultaneously
defined by

o v :=3fRy
e Forn > 0: v, := [DTC (v, +9)]

e Forn>0: v, := Elgl/nfl[%]

Proposition 51 Qr(v,) = Qr(v,) +1=n+1
Theorem 52

() Uy = vn(a,b), U, P vala,b)

(i) Vol = vnla,b), Vo™ (Va) [ va(a,b)

10



Proof: [By simultaneous induction on n]
(i) For n = 0: obvious.

(ii) For n > 0: Let U!, D' be as in definition 43. As in proposition 37 regard V,

as the concatenation of the structures !, D', ..., 42", D*". Remember that
i i i+1
by convention 36 for s € {left, right}: NV = 0P and ND =%

Recall that v, := [DTC Up + 6] We have to show that there i isa deterministic

Up + 6-path from 077 to NP but not from 0% to N,eft . For both it is

sufficient to show

—rlght rlght ) rlght

CLAIM: Let & = 0"% . Then V), E (vp +0)(a,8) & B=N&2

=right* rlght

‘&L easy.

“=”: By definition, there is an element v € V, such that V,, |= v,(a,7) and

Vi £ 8(7,3). There is an element g € Conn"™ such that there is a ‘f(R; +
R,)’-path from a to v (apply theorem 45 to v, 1 and recall v, := Jgv,_1 [Rf}t%]).
Clearly, g € U! and hence v € VertV». From V, E 4(v,3) we see that

v E {Onght, 0,efi} for some j (remember U,, = Zip(V,,—1) to confirm that there
is no other possibility). We have j = i, because otherwise v ¢ Ui. In fact,

= Otht and hence 8 = Nﬁ;ht. v = Q@i = Ng& would contradict (i), because
we started with V,, = v, (a, 7).

(i) For n > 0: Follows from (ii) for n — 1 by proposition 49.

]
7 Playing the Game
The following definitions are for m € IN U {x}
Definition 53 (G, (n,k,Y))  Gn(n,kY) := Gp(n, kY1, V%) O

Note that VIl and Y* share their universe and thus G, (n,k,Y) actually is a game
played on one structure.

Definition 54 (neat) A situation of G, (n, k,Y) is neat, if the couples (in the
sense of definition 12) form a partial isomorphism and for all couples (a, 3) either
acConnand f=a or a € Vertand § € {a, mirror(a)}. O

Definition 55 (isomorphic situations)  Twosituations & and T of G,,,(n, k,Y")
are isomorphic if there is an automorphism p of Yl such that & can be converted
to T by relocating all pebbles @; (but not the P;) according to p. O

Definition 56 (neatly wins) The duplicator neatly wins G,,(n,k,Y") if she
has a strategy Str, such that any situation that can occur if she uses Str is isomorphic
to a neat situation. Then Str is called a neat strategy. O

Proposition 57 If the duplicator has a neat strategy in a situation & and & is
isomorphic to X, then she has also a neat strategy in the situation <.

Proposition 58 Propositions 15 and 16 still hold if we replace “wins” by “neatly
wins”.

11



Definition 59 (Q-move) A Q-move is an 3-move or an V-move. O

Definition 60 (to copy, to mirror) Let in the game G,,(n,k,Y") the dupli-
cator make a Q-move to some a € ). Then we say that the duplicator copies the
move, if she places the corresponding pebble to a as well. On the other hand, if
a € Vert and the duplicator places the corresponding pebble to mirror, then we say
that she mirrors the move.

For a € Vert, a couple («, 3) is called even, if @« = 8 and odd, if « = mirror(3). O

Proposition 61 Let V' be an assorted sequence, U := Zip(V), Inlay be as in defi-
nition 39. Let & and T be neat situations of G, (n, k,Y") for which
e the depth of the game is 0,

e no pebbles are on Conn™?,

Let all pebbles P; in G be at the same place as in Y. Then G and T are isomorphic.
(Use proposition 42.)

Theorem 62 Forn € IN:
(i) The duplicator neatly wins G.(n,k,Uy,).
(ii) The duplicator neatly wins Go(n, k, V).
Proof:

(i) for n = 0: By definition the duplicator wins in the start situation, which is
neat.

(ii) for n > 0: Let U, D? be as in definition 43. In the initial situation we have pre-

cisely two couples, the even couple (ayH , ayx) and the odd couple (byH Y ).
Let us tell the duplicator how to win Go(n, k,V,,) neatly:

(a) Before the first I-move: Copy every Q-move to a connector.
Copy every Q-move to a vertex, unless the pebbled vertex is closer to
some odd couple than to any even couple. In that case mirror the move.

Check that when the first I-move is done, there is an [,1 <[ < 2%, such that
1 L L L
e there are no couples on U}, \ {Qg&,g:{g"ht, Ngﬁ,ﬂf{g"ht},

e for all i <[ all couples on U/} and D! are even

e for all i > [ all couples on U, and D are odd.

Note that no R-move back to depth 0 is possible. Thus on U}, we are in the
same situation as in G.(n,k,U,) when the obligatory initial I-move is done.
By (i) there is a neat strategy Str for that game.

(b) After the first I-move: Copy every Q-move to UL ,i < I.
Mirror every Q-move to U},,i > 1.
Answer all moves to U! according to Str.

In every situation, the automorphism of Z/{fLH that makes the situation
isomorphic to a neat situation, can be extended by identity to an auto-
morphism of VnH.
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(i) for n > 0: Remember U,, = Zip(V;,—1). Let Inlay be as in definition 39. By
propositions 16 and 58 it is sufficient to show that the duplicator neatly wins
Gm(n, k,Uy,) for every m > 0. Let m be given. By (ii) for n — 1 and propo-
sitions 15 and 58 there is a neat strategy Str for G,,,—1(n — 1,k,V,,—1). Note
that Gy,(m,...) and Gp,_1(n —1,...) only differ in the number of couples
that remain on the board in R-moves to depth 0.

Now we can advise the duplicator how to win G, (n, k,Y") neatly:

(a) Before the first R-move to depth 0: Answer all Q-moves to elements
Vn—1 according to Str.
Copy all Q-moves to Conn
For a Q-move to some i',,i" € Inlay: Ask Str whether to copy or to mirror
a Q-move to MV"*S and carry over Str’s instruction to i',.

(b) R-move to depth 0:

Case 1: At least one pair (P;, @;) of pebbles remains on Con niney. Ignore
that pair and proceed as in (a). We can ignore (P;, @;) because they
are both located on the same a € Conn'™?. This cannot interfere
with the strategy in (a).

Inlay

Case 2: All couples are removed from Conn™?: Play a virtual game

of Gy, (n, k,Uy). Let the virtual challenger start with a series of 3-
moves and let him place the virtual P; to where the real P; are. An-
swer these virtual moves as in (a). By proposition 61, the resulting
virtual situation is isomorphic to the real situation. By proposition
57, we can assume that the inducing automorphism equals identity
and proceed as in (a).

Now the Hierarchy Theorem (theorem 7) follows from the Game Theorem (theorem
13), theorem 52,(ii) and theorem 62,(ii).
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